F
19) The points (6,5), (7,2), (9,6), and (10,3) are vertices of an inscribed square.
A)(x - 8)2-(y - 4)2 = 5
B) (x – 8)2 + (y - 4)2 = 15
C) (X + 8)2 + (y + 4)2 = 5
D) (x - 8)2 + (y - 4)2 = 5
Find an equation for the circle

Respuesta :

Answer:

The equation of circle is [tex](x-8)^2+(y-4)^2=5[/tex]

(D) is correct option.

Step-by-step explanation:

Given that,

Points (6,5), (7,2), (9,6) and (10,3) are vertices of an inscribed square.

We need to calculate the distance between (7,2) and (9,6)

Using formula of distance

[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

Put the value into the formula

[tex]d^2=(9-7)^2+(6-2)^2[/tex]

[tex]d^2=20\ m[/tex]

The radius will be

[tex]r^2=\dfrac{20}{4}[/tex]

[tex]r^2=5[/tex]

We need to calculate the center of the point (7,2) and (9,6)

Using formula of center point

For x axis,

[tex]h=\dfrac{x_{2}+x_{1}}{2}[/tex]

Put the value into the formula

[tex]h=\dfrac{9+7}{2}[/tex]

[tex]h=\dfrac{16}{2}[/tex]

[tex]h=8[/tex]

For y axis,

[tex]k=\dfrac{y_{2}+y_{1}}{2}[/tex]

Put the value into the formula

[tex]k=\dfrac{6+2}{2}[/tex]

[tex]k=\dfrac{8}{2}[/tex]

[tex]k=4[/tex]

We need to find the equation for the circle

Using formula of equation of circle

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Put the value into the formula

[tex](x-8)^2+(y-4)^2=5[/tex]

Hence, The equation of circle is [tex](x-8)^2+(y-4)^2=5[/tex]

(D) is correct option.