A mass m = 0.6 kg is released from rest at the top edge of a hemispherical bowl with radius = 1.1 meters. The mass then slides without friction down the inner surface toward the bottom of the bowl. At a certain point of its path the mass achieves a speed v = 3.57 m/s. At this point, what angle \theta\:θ ( in degrees) does the mass make with the top of the bowl?

Respuesta :

Answer:

The  angle is  [tex]\theta = 36.24 ^o[/tex]

Explanation:

From the question we are told that

    The  mass is  [tex]m = 0.6 \ kg[/tex]

     The radius is  [tex]r = 1.1 \ m[/tex]

     The speed is  [tex]v = 3.57 \ m /s[/tex]

According to  the law of energy conservation

  The  potential energy of the mass at the top is equal to the kinetic energy at the bottom i.e

      [tex]m * g * h = \frac{1}{2} * m * v^2[/tex]

 =>    [tex]h = \frac{1}{2 g } * v^2[/tex]

Here h is the vertical distance traveled by the mass  which is also mathematically represented as

      [tex]h = r * sin (\theta )[/tex]

So

     [tex]\theta = sin ^{-1} [ \frac{1}{2* g* r } * v^2][/tex]

substituting values

     [tex]\theta = sin ^{-1} [ \frac{1}{2* 9.8* 1.1 } * (3.57)^2][/tex]

     [tex]\theta = 36.24 ^o[/tex]