Answer:
The angle is [tex]\theta = 36.24 ^o[/tex]
Explanation:
From the question we are told that
The mass is [tex]m = 0.6 \ kg[/tex]
The radius is [tex]r = 1.1 \ m[/tex]
The speed is [tex]v = 3.57 \ m /s[/tex]
According to the law of energy conservation
The potential energy of the mass at the top is equal to the kinetic energy at the bottom i.e
[tex]m * g * h = \frac{1}{2} * m * v^2[/tex]
=> [tex]h = \frac{1}{2 g } * v^2[/tex]
Here h is the vertical distance traveled by the mass which is also mathematically represented as
[tex]h = r * sin (\theta )[/tex]
So
[tex]\theta = sin ^{-1} [ \frac{1}{2* g* r } * v^2][/tex]
substituting values
[tex]\theta = sin ^{-1} [ \frac{1}{2* 9.8* 1.1 } * (3.57)^2][/tex]
[tex]\theta = 36.24 ^o[/tex]