193846
contestada

The length of the segment between the points $(2a, a-4)$ and $(4, -1)$ is $2\sqrt{10}$ units. What is the product of all possible values for $a$? LOTS OF POINTS AND BRAINLIEST TO CORRECT ANSWER!

Respuesta :

Answer:

-3

Step-by-step explanation:

The length of a segment is

sqrt( ( y2-y1)^2 + (x2-x1) ^2) = 2 sqrt(10)

sqrt( ( a-4 - -1)^2 + (2a -4) ^2) = 2 sqrt(10)

sqrt( ( a-4 +1)^2 + (2a -4) ^2) = 2 sqrt(10)

Combine like terms

sqrt( ( a-3)^2 + (2a -4) ^2) = 2 sqrt(10)

Square each side

( a-3)^2 + (2a -4) ^2) = 4 *(10)

FOIL the left side

a^2 -6a +9   + 4a^2 -16a +16 = 40

Combine like terms

5a^2 -22a +25 = 40

Subtract 40 from each side

5a^2 -22a -15 =0

Factor

(a - 5) (5 a + 3) = 0

Using the zero product property

a-5 =0   5a +3 = 0

a = 5       5a = -3

a=5     a = -3/5

The product of the terms is

5 * -3/5 = -3