Respuesta :

When raising a power inside parentheses to another power, multiply the numbers:

(6^4)^2 = 6^(4x2) = 6^8

Simplified = 6^8

6^8 = 1679616

Answer:

[tex] \boxed{ \purple{ {6}^{8} }}[/tex]

Step-by-step explanation:

[tex] \mathsf{ ( { {6}^{4}) }^{2} }[/tex]

It is the example of Power to power law of indices.

Multiply the exponents

⇒[tex] \mathsf{ {6}^{4 \times 2} }[/tex]

Multiply the numbers

⇒[tex] \mathsf{ {6}^{8} }[/tex]

-------------------------------------------------------

[tex] \mathsf{\orange{ \underline{ power \: to \: power \: law \: of \: indices}}}[/tex]

If [tex] \mathsf{ ({x}^{a} )^{b}} [/tex] is an algebraic term then [tex] \mathsf{( {x}^{a} ) ^{b} = {x}^{a \times b} }[/tex]

i.e When an algebraic term in the index form is raised to another index , the base is raised to the power of two indices.

Hope I helped!

Best regards!!