Respuesta :
When raising a power inside parentheses to another power, multiply the numbers:
(6^4)^2 = 6^(4x2) = 6^8
Simplified = 6^8
6^8 = 1679616
Answer:
[tex] \boxed{ \purple{ {6}^{8} }}[/tex]
Step-by-step explanation:
[tex] \mathsf{ ( { {6}^{4}) }^{2} }[/tex]
It is the example of Power to power law of indices.
Multiply the exponents
⇒[tex] \mathsf{ {6}^{4 \times 2} }[/tex]
Multiply the numbers
⇒[tex] \mathsf{ {6}^{8} }[/tex]
-------------------------------------------------------
[tex] \mathsf{\orange{ \underline{ power \: to \: power \: law \: of \: indices}}}[/tex]
If [tex] \mathsf{ ({x}^{a} )^{b}} [/tex] is an algebraic term then [tex] \mathsf{( {x}^{a} ) ^{b} = {x}^{a \times b} }[/tex]
i.e When an algebraic term in the index form is raised to another index , the base is raised to the power of two indices.
Hope I helped!
Best regards!!