Respuesta :
Answer:
[tex] \boxed{\sf A = 4} [/tex]
Given:
F = MA
F = 10
M = 2.5
To Find:
Value of A
Step-by-step explanation:
[tex]\sf Substituting \ values \ of \ F \ and \ M \ in \ F = MA:[/tex]
[tex]\sf \implies 10 = 2.5A[/tex]
[tex] \sf \implies 2.5A = 10[/tex]
[tex]\sf Dividing \ both \ side \ of \ 2.5A = 10 \ by \ 2.5:[/tex]
[tex] \sf \implies \frac{2.5}{2.5} A = \frac{10}{2.5} [/tex]
[tex] \sf \frac{2.5}{2.5} = 1 : [/tex]
[tex] \sf \implies A = \frac{10}{2.5} [/tex]
[tex] \sf \frac{4 \times \cancel{2.5}}{ \cancel{2.5}} = 4 : [/tex]
[tex] \sf \implies A = 4[/tex]
Answer:A=4
Step-by-step explanation:
10=2.5 X A
10/2.5=4
10=2.5(4)
A=4