Respuesta :

Answer:

[tex] \boxed{\sf A = 4} [/tex]

Given:

F = MA

F = 10

M = 2.5

To Find:

Value of A

Step-by-step explanation:

[tex]\sf Substituting \ values \ of \ F \ and \ M \ in \ F = MA:[/tex]

[tex]\sf \implies 10 = 2.5A[/tex]

[tex] \sf \implies 2.5A = 10[/tex]

[tex]\sf Dividing \ both \ side \ of \ 2.5A = 10 \ by \ 2.5:[/tex]

[tex] \sf \implies \frac{2.5}{2.5} A = \frac{10}{2.5} [/tex]

[tex] \sf \frac{2.5}{2.5} = 1 : [/tex]

[tex] \sf \implies A = \frac{10}{2.5} [/tex]

[tex] \sf \frac{4 \times \cancel{2.5}}{ \cancel{2.5}} = 4 : [/tex]

[tex] \sf \implies A = 4[/tex]

Answer:A=4

Step-by-step explanation:

10=2.5 X A

10/2.5=4

10=2.5(4)

A=4