Triangle A″B″C″ is formed by a reflection over y = −3 and dilation by a scale factor of 2 from the origin. Which equation shows the correct relationship between ΔABC and ΔA″B″C″? coordinate plane with triangle ABC at A negative 3 comma 3, B 1 comma negative 3, and C negative 3 comma negative 3

Respuesta :

Answer:

Option (3)

Step-by-step explanation:

This question is not complete; here is the complete question.

Triangle A″B″C″ is formed by a reflection over y = −3 and dilation by a scale factor of 2 from the origin. Which equation shows the correct relationship between ΔABC and ΔA″B″C″?

Coordinates of the vertices of the triangle ABC are,

A(-3, 3), B(1, -3) and C(-3, -3)

When triangle ABC is reflected over y = -3

Coordinates of the image triangle A'B'C' will be.

A(-3, 3) → A'(-3, -9)

B(1, -3) → B'(1, -3)

C(-3, -3) → C'(-3, -3)

Further ΔA'B'C' is dilated by a scale factor of 2 about the origin then the new vertices of image triangle A"B"C" will be,

Rule for the dilation will be,

(x, y) → (kx, ky) [where 'k' is the scale factor]

A'(-3, -9) → A"(-6, -18)

B'(1, -3) → B"(2, -6)

C'(-3, -3) → C"(-6, -6)

Length of AB = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

                      = [tex]\sqrt{(-3-1)^2+(3+3)^2}[/tex]

                      = [tex]\sqrt{52}[/tex]

                      = [tex]2\sqrt{13}[/tex]

Length of A"B" = [tex]\sqrt{(-6-2)^2+(-18+6)^2}[/tex]

                         = [tex]\sqrt{64+144}[/tex]

                         = [tex]\sqrt{208}[/tex]

                         = [tex]4\sqrt{13}[/tex]

Therefore, [tex]\frac{\text{AB}}{\text{A"B"}}=\frac{2\sqrt{13}}{4\sqrt{13}}[/tex]

[tex]\frac{\text{AB}}{\text{A"B"}}=\frac{\sqrt{13}}{2\sqrt{13}}[/tex]

[tex]AB(2\sqrt{13})=A"B"(\sqrt{13})[/tex]

Option (3) is the answer.

Ver imagen eudora