Respuesta :
Answer:
1) f = 214 Hz , 2) answer is c , 3) f = 428 Hz , 4) f₂ = 428 Hz , f₃ = 643Hz
Explanation:
1) A tube with both ends open, the standing wave has a maximum amplitude and a node in its center, therefore
L = λ / 2
λ = 2L
λ = 2 0.8
λ = 1.6 m
wavelength and frequency are related to the speed of sound (v = 343 m / s)
v =λ f
f = v / λ
f = 343 / 1.6
f = 214 Hz
2) In this case the air comes out through the open hole, so we can assume that the length of the tube is reduced
λ' = 2 L ’
as L ’<L₀
λ' <λ₀
f = v / λ'
f' > fo
the correct answer is c
3) in this case the length is L = 0.40 m
λ = 2 0.4 = 0.8 m
f = 343 / 0.8
f = 428 Hz
4) the different harmonics are described by the expression
λ = 2L / n n = 1, 2, 3
λ₂ = L
f₂ = 343 / 0.8
f₂ = 428 Hz
λ₃ = 2 0.8 / 3
λ₃ = 0.533 m
f₃ = 343 / 0.533
f₃ = 643 Hz
4,1) as we have two maximums at the ends, all integer multiples are present
the answer is C
E) the length of an open pipe created that has a wavelength of lam = 1.6 m is requested
in this pipe there is a maximum in the open part and a node in the closed part, so the expression
L = λ / 4
L = 1.6 / 4
L = 0.4 m
the answer is C
F) in this type of pipe the general expression is
λ = 4L / n n = 1, 3, 5 (2n + 1)
therefore only odd values can produce standing waves
λ₃ = 4L / 3
λ₃ = 4 0.4 / 3
λ₃ = 0.533
f₃ = 343 / 0.533
f₃ = 643 Hz