Find the remainder in the Taylor series centered at the point a for the following function. Then show that limn→[infinity]Rn(x)=0 for all x in the interval of convergence.

f(x)=cos x, a= π/2

Respuesta :

Answer:

[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]

Step-by-step explanation:

From the given question; the objective is to show that :

[tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x in the interval of convergence f(x)=cos x, a= π/2

Assuming for the convergence f the taylor's series , f happens to be the derivative on an open interval I with a . Then the Taylor series for the convergence of f , for all x in I , if and only if  [tex]\lim_{n \to \infty} R_n (x) = 0[/tex]  

where;

[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-a)^{n+1}}[/tex]

is a remainder at x and c happens to be between x and a.

Given that:

a= π/2

Then; the above equation can be written as:

[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-\dfrac{\pi}{2})^{n+1}}[/tex]

so c now happens to be the points between π/2 and x

If we recall; we know that:

[tex]f^{(n+1)}(c) = \pm \ sin \ c \ or \ cos \ c[/tex] (as a result of the value of n)

However, it is true that for all cases that  [tex]|f ^{(n+1)} \ (c) | \leq 1[/tex]

Hence, the remainder terms is :

[tex]|R_n (x)| = | \dfrac{f^{(n+1)}(c)}{(n+1!)}(x-\dfrac{\pi}{2})^{n+1}| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]

If [tex]\lim_{n \to \infty} R_n (x) = 0[/tex]   for all x and x is fixed, Then

[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]