(Small sample confidence intervals for a population mean) suppose you are taking a sampling of 15 measurements. you find that x=75 and s =5. assuming normality, the 99% confidence interval for the population mean is:__________

Respuesta :

Answer:

The 99% confidence interval is  [tex]71.67 < \mu < 78.33[/tex]

Step-by-step explanation:

From the question we are told that

     The sample  size  is  [tex]n = 15[/tex]

      The  sample  mean is  [tex]\= x = 75[/tex]

        The  standard deviation is  [tex]s = 5[/tex]

 Given that confidence is  99%  then the level of significance is mathematically represented as

              [tex]\alpha = 100 - 99[/tex]

             [tex]\alpha = 1\%[/tex]

             [tex]\alpha = 0.01[/tex]

Next we obtain the critical values of  [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table

   The  value is

                  [tex]Z_{\frac{ \alpha }{2} } = 2.58[/tex]

Generally the margin for error is mathematically represented as

            [tex]E = Z_{\frac{ \alpha }{2} } * \frac{ s}{ \sqrt{n} }[/tex]

=>         [tex]E = 2.58 * \frac{ 5}{ \sqrt{15} }[/tex]

=>         [tex]E = 3.3307[/tex]

   The  99% confidence interval is mathematically represented as

             [tex]\= x -E < \mu < \= x +E[/tex]

=>          [tex]75 - 3.3307 < \mu <75 + 3.3307[/tex]

=>          [tex]71.67 < \mu < 78.33[/tex]