1-What is the sum of the series? ​∑j=152j​ Enter your answer in the box.

2-What is the sum of the series? ∑k=14(2k2−4) Enter your answer in the box.

3-What is the sum of the series? ∑k=36(2k−10)

4-Which answer represents the series in sigma notation? 1+12+14+18+116+132+164 ∑j=1712(j+1) ∑j=172j−1 ∑j=1712j+1 ∑j=17(12)j−1

5-Which answer represents the series in sigma notation? −3+(−1)+1+3+5 ∑j=155j−1 ∑j=15(3j−6) ∑j=15(2j−5) ∑j=15−3(13)j−1

Respuesta :

Answer:

Please see the Step-by-step explanation for the answers

Step-by-step explanation:

1)

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] 2j

The sum of series from j=1 to j=5 is:

∑ = 2(1) + 2(2) + 2(3) + 2(4) + 2(5)

  =  2 + 4 + 6 + 8 + 10

∑ = 30

2)

This question is not given clearly so i assume the following series that will give you an idea how to solve this:

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²

The sum of series from k=1 to j=4 is:

∑ = 2(1)² + 2(2)² + 2(3)² + 2(4)²

  = 2(1) + 2(4) + 2(9) + 2(16)

  =  2 + 8 + 18 + 32

∑ = 60

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²

∑ = (2*1)² + (2*2)² + (2*3)² + (2*4)²

  = (2)² + (4)² + (6)² + (8)²

  = 4 + 16 + 36 + 64

∑ = 120

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²- 4

∑ = (2*1)²-4 + (2*2)²-4 + (2*3)²-4 + (2*4)²-4

  = (2)²-4 + (4)²-4 + (6)²-4 + (8)²-4

  = (4-4) + (16-4) + (36-4) + (64-4)

  = 0 + 12 + 32 + 60

∑ = 104

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²- 4

∑ = 2(1)²-4 + 2(2)²-4 + 2(3)²-4 + 2(4)²-4

  = 2(1)-4 + 2(4)-4 + 2(9)-4 + 2(16)-4

  = (2-4) + (8-4) + (18-4) + (32-4)

  = -2 + 4 + 14 + 28

∑ = 44

3)

∑[tex]\left \ {{6} \atop {k=3}} \right.[/tex] (2k-10)

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)  

  = (6-10) + (8-10) + (10-10) + (12-10)

  = -4 + -2 + 0 + 2  

∑ = -4

4)

1+1/2+1/4+1/8+1/16+1/32+1/64

This is a geometric sequence where first term is 1 and the common ratio is 1/2 So

a = 1

This can be derived as

1/2/1 = 1/2 * 1 = 1/2

1/4/1/2 = 1/4 * 2/1 = 1/2

1/8/1/4 = 1/8 * 4/1  = 1/2

1/16/1/8 = 1/16 * 8/1  = 1/2

1/32/1/16 = 1/32 * 16/1  = 1/2

1/64/1/32 = 1/64 * 32/1  = 1/2

Hence the common ratio is r = 1/2

So n-th term is:

[tex]ar^{n-1}[/tex] = [tex]1(\frac{1}{2})^{n-1}[/tex]

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{7} \atop {j=1}} \right.[/tex] [tex](\frac{1}{2})^{j-1}[/tex]

5)

−3+(−1)+1+3+5

This is an arithmetic sequence where the first term is -3 and the common difference is 2. So  

a = 1

This can be derived as

-1 - (-3) = -1 + 3 = 2

1 - (-1) = 1 + 1 = 2

3 - 1 = 2

5 - 3 = 2

Hence the common difference d = 2

The nth term is:

a + (n - 1) d

= -3 + (n−1)2

= -3 + 2(n−1)

= -3 + 2n - 2

= 2n - 5

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] (2j−5)

For (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

We have different series in the question.

It is required to find the sum of all series.

What is a series?

In mathematics, a series can be defined as a group of data that followed certain rules of arithmetic.

1) We have:

[tex]\rm \sum j=2j[/tex]   where j = 1 to j = 5

After expanding the series, we get:

= 2(1)+2(2)+2(3)+2(4)+2(5)

=2(1+2+3+4+5)

= 2(15)

=30

2) We have:

[tex]\rm \sum k=(2k^2-4)[/tex]  where k = 1 to k = 4

After expanding the series, we get:

[tex]\rm = (2(1)^2-4)+(2(2)^2-4)+(2(3)^2-4)+(2(4)^2-4)+(2(5)^2-4)\\[/tex]

[tex]\rm = 2[1^2+2^2+3^2+4^2+5^2]-4\times5\\\\\rm=2[55]-20\\\\\rm = 90[/tex]

3) We have:

[tex]\rm \sum k= (2k-10)[/tex]  where k = 3 to k = 6

After expanding the series, we get:

[tex]= (2(3)-10)+(2(4)-10)+(2(5)-10)+(2(6)-10)\\\\=2[3+4+5+6] - 10\times4\\\\=2[18] - 40\\\\= -4[/tex]

4) The series given below:

[tex]1, \frac{1}{2} ,\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{64}[/tex]

It is a geometric progression:

[tex]\rm n^t^h[/tex] for the geometric progression is given by:

[tex]\rm a_n = ar^{n-1}[/tex]

[tex]\rm a_n = 1(\frac{1}{2})^{n-1}\\\\\rm a_n = (\frac{1}{2})^{n-1}\\[/tex]

In sigma notation we can write:

[tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7

5) The given series:

−3+(−1)+1+3+5, it is arithmetic series.

[tex]\rm n^t^h[/tex] for the arithmetic progression is given by:

[tex]\rm a_n = a+(n-1)d[/tex]

[tex]\rm a_n = -3+(n-1)(2)\\\\\rm a_n = 2n-5[/tex]

In sigma notation we can write:

[tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5

Thus, for (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

Learn more about the series here:

https://brainly.com/question/10813422