A single-turn current loop carrying a 4.00 A current, is in the shape of a right-angle triangle with sides of 50.0 cm, 120 cm, and 130 cm. The loop is in a uniform magnetic field of magnitude 75.0 mT whose direction is parallel to the current in the 130 cm side of the loop. What is the magnitude of the magnetic force on the

Respuesta :

Given that,

Current = 4 A

Sides of triangle = 50.0 cm, 120 cm and 130 cm

Magnetic field = 75.0 mT

Distance = 130 cm

We need to calculate the angle α

Using cosine law

[tex]120^2=130^2+50^2-2\times130\times50\cos\alpha[/tex]

[tex]\cos\alpha=\dfrac{120^2-130^2-50^2}{2\times130\times50}[/tex]

[tex]\alpha=\cos^{-1}(0.3846)[/tex]

[tex]\alpha=67.38^{\circ}[/tex]

We need to calculate the angle β

Using cosine law

[tex]50^2=130^2+120^2-2\times130\times120\cos\beta[/tex]

[tex]\cos\beta=\dfrac{50^2-130^2-120^2}{2\times130\times120}[/tex]

[tex]\beta=\cos^{-1}(0.923)[/tex]

[tex]\beta=22.63^{\circ}[/tex]

We need to calculate the force on 130 cm side

Using formula of force

[tex]F_{130}=ILB\sin\theta[/tex]

[tex]F_{130}=4\times130\times10^{-2}\times75\times10^{-3}\sin0[/tex]

[tex]F_{130}=0[/tex]

We need to calculate the force on 120 cm side

Using formula of force

[tex]F_{120}=ILB\sin\beta[/tex]

[tex]F_{120}=4\times120\times10^{-2}\times75\times10^{-3}\sin22.63[/tex]

[tex]F_{120}=0.1385\ N[/tex]

The direction of force is out of page.

We need to calculate the force on 50 cm side

Using formula of force

[tex]F_{50}=ILB\sin\alpha[/tex]

[tex]F_{50}=4\times50\times10^{-2}\times75\times10^{-3}\sin67.38[/tex]

[tex]F_{50}=0.1385\ N[/tex]

The direction of force is into page.

Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.

Ver imagen CarliReifsteck
Lanuel

a. The magnitude of the magnetic force on the 130 cm side is 0 Newton.

b. The magnitude of the magnetic force on the 120 cm side is 0.1385 Newton.

c. The magnitude of the magnetic force on the 50 cm side is 0.1385 Newton.

Given the following data:

  • Current = 4.00 Amperes.
  • Magnetic field strength = 75.0 mT = [tex]7.5 \times 20^{-3}\;T[/tex]
  • Length = 130 cm to m = 1.3 m
  • Hypotenuse = 130 cm
  • Opposite side = 120 cm
  • Adjacent side = 50 cm

Let us assume the current is flowing in a counterclockwise direction in the right-angle triangle.

First of all, we would determine the angles by using cosine rule:

[tex]C^2=A^2 +B^2 - 2ABCos\alpha \\\\120^2=130^2 +50^2 - 2(130)(50)Cos\alpha\\\\14400 = 16900 + 2500 -13000Cos\alpha\\\\13000Cos\alpha=19400-14400 \\\\Cos\alpha=\frac{5000}{13000} \\\\\alpha = Cos^{-1}(0.3846)\\\\\alpha =67.38^\circ[/tex]

[tex]C^2=A^2 +B^2 - 2ABCos\beta \\\\50^2=120^2 +130^2 - 2(120)(130)Cos\beta \\\\2500 = 14400 + 16900 -31200Cos\beta\\\\31200Cos\alpha=31300-2500 \\\\Cos\beta=\frac{28800}{31200} \\\\\beta = Cos^{-1}(0.9231)\\\\\beta =22.62^\circ[/tex]

a. To the determine the magnitude of the magnetic force on the 130 cm side:

Mathematically, the force acting on a current in a magnetic field is given by the formula:

[tex]F = BILsin\theta[/tex]

Where:

  • B is the magnetic field strength.
  • I is the current flowing through a conductor.
  • L is the length of conductor.
  • [tex]\theta[/tex] is the angle between a conductor and the magnetic field.

Substituting the given parameters into the formula, we have;

[tex]F_{130}=7.5 \times 20^{-3}\times 4 \times 1.3 \times sin(0)\\\\F_{130}=7.5 \times 20^{-3}\times 4 \times 1.3 \times0\\\\F_{130}=0\;Newton[/tex]

b. To the determine the magnitude of the magnetic force on the 120 cm side:

[tex]F_{120}=BILsin\beta[/tex]

[tex]F_{120}=7.5 \times 20^{-3}\times 4 \times 1.2 \times sin(22.62)\\\\F_{120}=7.5 \times 20^{-3}\times 4 \times 1.2 \times0.3846\\\\F_{120}=0.1385\;Newton[/tex]

c. To the determine the magnitude of the magnetic force on the 50 cm side:

[tex]F_{50}=BILsin\alpha[/tex]

[tex]F_{50}=7.5 \times 20^{-3}\times 4 \times 0.5 \times sin(67.38)\\\\F_{50}=7.5 \times 20^{-3}\times 4 \times 1.2 \times0.9231\\\\F_{50}=0.1385\;Newton[/tex]

Read more: https://brainly.com/question/13754413