Two interior angles of a convex pentagon are right angles and the other three interior angles are congruent. in degrees, what is the measure of one of the three congruent interior angles?

Respuesta :

Answer:

[tex]120^{0}[/tex]

Step-by-step explanation:

Given: pentagon (5 sided polygon), two interior angles = [tex]90^{0}[/tex] each, other three interior angles are congruent.

Sum of angles in a polygon = (n - 2) × [tex]180^{0}[/tex]

where n is the number of sides of the polygon.

For a pentagon, n = 5, so that;

Sum of angles in a pentagon = (5 - 2) × [tex]180^{0}[/tex]

                                                = 3  × [tex]180^{0}[/tex]

                                                = [tex]540^{0}[/tex]

Sum of angles in a pentagon is [tex]540^{0}[/tex].

Since two interior angles are right angle, the measure of one of its three congruent interior angles can be determined by;

[tex]540^{0}[/tex] - (2 × [tex]90^{0}[/tex])  = [tex]540^{0}[/tex] - [tex]180^{0}[/tex]

                       = [tex]360^{0}[/tex]

So that;

the measure of the interior angle = [tex]\frac{360^{0} }{3}[/tex]

                                                        = [tex]120^{0}[/tex]

The measure of one of its three congruent interior angles is [tex]120^{0}[/tex].