Answer:
The function is continuous at x = 36
Step-by-step explanation:
From the question we are told that
The function is [tex]f(x) = x * \sqrt{ \frac{x}{ (x-6) ^2 } }[/tex]
The point at which continuity is tested is x = 1
Now from the definition of continuity ,
At function is continuous at k if only
[tex]\lim_{x \to k}f(x) = f(k)[/tex]
So
[tex]\lim_{x \to 36}f(x) = \lim_{n \to 36}[x * \sqrt{ \frac{x}{ (x-6) ^2 } }][/tex]
[tex]= 36 * \sqrt{ \frac{36}{ (36-6) ^2 } }[/tex]
[tex]= 7.2[/tex]
Now
[tex]f(36) = 36 * \sqrt{ \frac{36}{ (36-6) ^2 } }[/tex]
[tex]f(36) = 7.2[/tex]
So the given function is continuous at x = 36
because
[tex]\lim_{x \to 36}f(x) = f(36)[/tex]