Water is pumped with a 120 kPa compressor entering the lower pipe (1) and flows upward at a speed of 1 m/s. Acceleration due to gravity is 10 m/s and water density is1000 kg/m-3. What is the water pressure on the upper pipe (II).

Respuesta :

Answer:

The water pressure on the upper pipe is 92.5 kPa.

Explanation:

Given that,

Pressure in lower pipe= 120 kPa

Speed of water in lower pipe= 1 m/s

Acceleration due to gravity = 10 m/s²

Density of water = 1000 kg/m³

Radius of lower pipe = 12 m

Radius of uppes pipe = 6 m

Height of upper pipe = 2 m

We need to calculate the velocity in upper pipe

Using continuity equation

[tex]A_{1}v_{1}=A_{2}v_{1}[/tex]

[tex]\pi r_{1}^2\times v_{1}=\pi r_{2}^2\times v_{2}[/tex]

[tex]v_{2}=\dfrac{r_{1}^2\times v_{1}}{r_{2}^2}[/tex]

Put the value into the formula

[tex]v_{2}=\dfrac{12^2\times1}{6^2}[/tex]

[tex]v_{2}=4\ m/s[/tex]

We need to calculate the water pressure on the upper pipe

Using bernoulli equation

[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho gh_{2}[/tex]

Put the value into the formula

[tex]120\times10^{3}+\dfrac{1}{2}\times1000\times1^2+1000\times10\times0=P_{2}+\dfrac{1}{2}\times1000\times(4)^2+1000\times10\times2[/tex]

[tex]120500=P_{2}+28000[/tex]

[tex]P_{2}=120500-28000[/tex]

[tex]P_{2}=92500\ Pa[/tex]

[tex]P_{2}=92.5\ kPa[/tex]

Hence, The water pressure on the upper pipe is 92.5 kPa.

Ver imagen CarliReifsteck