Answer:
The water pressure on the upper pipe is 92.5 kPa.
Explanation:
Given that,
Pressure in lower pipe= 120 kPa
Speed of water in lower pipe= 1 m/s
Acceleration due to gravity = 10 m/s²
Density of water = 1000 kg/m³
Radius of lower pipe = 12 m
Radius of uppes pipe = 6 m
Height of upper pipe = 2 m
We need to calculate the velocity in upper pipe
Using continuity equation
[tex]A_{1}v_{1}=A_{2}v_{1}[/tex]
[tex]\pi r_{1}^2\times v_{1}=\pi r_{2}^2\times v_{2}[/tex]
[tex]v_{2}=\dfrac{r_{1}^2\times v_{1}}{r_{2}^2}[/tex]
Put the value into the formula
[tex]v_{2}=\dfrac{12^2\times1}{6^2}[/tex]
[tex]v_{2}=4\ m/s[/tex]
We need to calculate the water pressure on the upper pipe
Using bernoulli equation
[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho gh_{2}[/tex]
Put the value into the formula
[tex]120\times10^{3}+\dfrac{1}{2}\times1000\times1^2+1000\times10\times0=P_{2}+\dfrac{1}{2}\times1000\times(4)^2+1000\times10\times2[/tex]
[tex]120500=P_{2}+28000[/tex]
[tex]P_{2}=120500-28000[/tex]
[tex]P_{2}=92500\ Pa[/tex]
[tex]P_{2}=92.5\ kPa[/tex]
Hence, The water pressure on the upper pipe is 92.5 kPa.