Respuesta :

Answer:

[tex]p = \frac{25}{4}[/tex]

Step-by-step explanation:

Given

[tex]x\² - 5x + p[/tex]

Required

Find p, such that the expression is a perfect square

Write out the coefficient of x

Coefficient = -5

Next step is to divide the coefficient of x by 2

[tex]Result = \½(-5)[/tex]

Take the square of the above expression to give p

[tex]p = (\½(-5))\²[/tex]

[tex]p = (\½(-5) * (\½(-5)[/tex]

[tex]p = \½ * \½ * (-5) * (-5)[/tex]

[tex]p = \¼(25)[/tex]

[tex]p = \frac{25}{4}[/tex]

Substitute 25/4 for p in the given expression

[tex]x\² - 5x + p[/tex] becomes

[tex]x\² -5x + \frac{25}{4}[/tex]

Expand the above expression

[tex]x\² - \frac{5x}{2} - \frac{5x}{2} + \frac{25}{4}[/tex]

Factorize

[tex]x(x - \frac{5}{2}) - \frac{5}{2}(x - \frac{5}{2})[/tex]

[tex](x - \frac{5}{2})(x - \frac{5}{2})[/tex]

[tex](x - \frac{5}{2})\²[/tex]

Hence, the value of p is [tex]p = \frac{25}{4}[/tex]