A same side interior angle of two parallel lines is 20° less than the other same side interior angle. Find the measures of these two angles.

Respuesta :

Answer:

The measures of the two angles are 80 and 100

Step-by-step explanation:

Let [tex]m_1[/tex] and [tex]m_2[/tex] represent the two angles such that

[tex]m_1 = m_2 - 20[/tex]

Required

Find [tex]m_1[/tex] and [tex]m_2[/tex]

The two angles of a same-side interior angle of parallel lines add up to 180;

This implies that

[tex]m_1 + m_2 = 180[/tex]

Substitute [tex]m_2 - 20[/tex] for [tex]m_1[/tex]

[tex]m_1 + m_2 = 180[/tex] becomes

[tex]m_2 - 20 + m_2 = 180[/tex]

Collect like terms

[tex]m_2 + m_2 = 180 + 20[/tex]

[tex]2m_2 = 180 + 20[/tex]

[tex]2m_2 = 200[/tex]

Divide both sides by 2

[tex]\frac{2m_2}{2} = \frac{200}{2}[/tex]

[tex]m_2 = \frac{200}{2}[/tex]

[tex]m_2 = 100[/tex]

Recall that [tex]m_1 = m_2 - 20[/tex]

[tex]m_1 = 100 - 20[/tex]

[tex]m_1 = 80[/tex]

Hence, the measures of the two angles are 80 and 100