Respuesta :

Answer:

3, 12

Step-by-step explanation:

Et x and y be the required integers.

Case 1: x = 5y - 3...(1)

Case 2: xy = 36

Hence, (5y - 3)*y = 36

[tex]5 {y}^{2} - 3y = 36 \\ 5 {y}^{2} - 3y - 36 = 0 \\ 5 {y}^{2} - 15y + 12y - 36 = 0 \\ 5y(y - 3) + 12(y - 3) = 0 \\ (y - 3)(5y + 12) = 0 \\ y - 3 = 0 \: or \: 5y + 12 = 0 \\ y = 3 \: \: or \: \: y = - \frac{12}{5} \\ \because \: y \in \: I \implies \: y \neq - \frac{12}{5} \\ \huge \purple{ \boxed{ \therefore \: y = 3}} \\ \because \: x = 5y - 3..(equation \: 1) \\ \therefore \: x = 5 \times 3 - 3 = 15 - 3 = 12 \\ \huge \red{ \boxed{ x = 12}}[/tex]

Hence, the required integers are 3 and 12.

let

x  = one integer

y = another integer

x = 5y - 3

If the product of the two integers is 36, then find the integers.

x * y = 36

(5y - 3) * y = 36

5y² - 3y = 36

5y² - 3y - 36 = 0

Solve the quadratic equation using factorization method

That is, find two numbers whose product will give -180 and sum will give -3

Note: coefficient of y² multiplied by -36 = -180

5y² - 3y - 36 = 0

The numbers are -15 and +12

5y² - 15y + 12y - 36 = 0

5y(y - 3) + 12 (y - 3) = 0

(5y + 12) (y - 3) = 0

5y + 12 = 0      y - 3 = 0

5y = - 12           y = 3

y = -12/5

The value of y can not be negative

Therefore,

y = 3

Substitute y = 3 into x = 5y - 3

x = 5y - 3

x = 5(3) - 3

= 15 - 3

= 12

x = 12

Therefore,

(x, y) = (12, 3)

Read more:

https://brainly.com/question/20411172