Respuesta :

Answer:

the intersection point is ( -5/4, -5/4, -9/8)

Step-by-step explanation:

F(x,y,z) = x² +y² -z= 0

Then find differential of each terms then we have

∀f(x)=2x

∀f(y)=2y

∀f(z)=-1

The partial differential which is the director vector is at F(x,y,z)= (1,1,2)

Vf(1,1,2) = (2,2,-1)

But the given point is ( 1.1,2)

Then the parametric equation of normal line will be

x= 1+2t

y= 1+2t

z= 2 -t

The parametric equation can be formed as

(1+2t)² + (1+2t)² - (2-t)= 0

If we expand the expression above we have,

2(1+4t+4t²) - 2+t= 0

0= 8t² + 9t

t= 0 or t= -9/8

Substitute the value of t into the parametric equation above

At t=0

x= 1+2t; x= 1+2(0)=1

y= 1+2t; y= 1+2(0)=1

z=2 -t ; z= 2-(0)= 2

At =0 , we have (1,1,2)

At t= -9/8

x= 1+2t; x= 1+2(-9/8)=-5/4

y= 1+2t; y= 1+2(-9/8)=-5/4

z=2 -t ; z= 2-(-9/8)= -9/8

Therefore, the intersection point is ( -5/4, -5/4, -9/8)

The normal intersects the paraboloid at [tex](-\frac{5}{4},-\frac{5}{4},\frac{25}{8} )[/tex]

Paraboloid:

A surface all of whose intersections by planes are either parabolas and ellipses or parabolas and hyperbolas.

Given function is,

[tex]z = x^2 + y^2[/tex]

We can write the given function as,

[tex]F(x,y,z)=x^2+y^2-z[/tex]

Compute the gradient  [tex]F[/tex] by using the formula,

[tex]\nabla F(x,y,z)=\left\langle 2x,2y,-1\right\rangle[/tex]

At (1,1,2) we get,

[tex]\nabla F(x,y,z)=\left\langle 2,2,-1\right\rangle[/tex]

The equation of the tangent plane at (1,1,2) is,

[tex]2(x-1)+2(y-1)-(z-2)=0\\2x+2y-z-2=0\\\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{-1}=t\\ x=2t+1,y=2t+1,z=-t+2[/tex]

Replace the values of [tex]x,y,z[/tex] in [tex]z = x^2 + y^2[/tex] and then solve for [tex]t[/tex] then,

[tex]-t+2=(2t+1)^2+(2t+1)^2\\8t^2+9t=0\\t=0,-\frac{9}{8}[/tex]

Substituting the value into the parametric equations,

[tex]x=2(-\frac{9}{8} )+1,y=2(-\frac{9}{8} )+1,\ and \ z=-(-\frac{9}{8} )+2\\x=-\frac{5}{4}, \ y= -\frac{5}{4} ,z=\frac{25}{8}[/tex]

Therefore, the normal intersects the paraboloid at [tex](-\frac{5}{4},-\frac{5}{4},\frac{25}{8} )[/tex]

Learn more about the topics paraboloid:

https://brainly.com/question/17593461