Determine the radius of an Al atom (in pm) if the density of aluminum is 2.71 g/cm3 . Aluminum crystallizes in a face centered cubic structure with an edge leng

Respuesta :

Answer:

143pm is the radius of an Al atom

Explanation:

In a face centered cubic structure, FCC, there are 4 atoms per unit cell.

First, you need to obtain the mass of an unit cell using molar mass of Aluminium  and thus, obtain edge length and knowing Edge = √8R you can find the radius, R, of an Al atom.

Mass of an unit cell

As 1 mole of Al weighs 26.98g. 4 atoms of Al weigh:

4 atoms × (1mole / 6.022x10²³atoms) × (26.98g / mole) = 1.792x10⁻²²g

Edge length

As density of aluminium is 2.71g/cm³, the volume of an unit cell is:

1.792x10⁻²²g × (1cm³ / 2.71g) = 6.613x10⁻²³cm³

And the length of an edge of the cell is:

∛6.613x10⁻²³cm³ = 4.044x10⁻⁸cm = 4.044x10⁻¹⁰m

Radius:

As in FCC structure, Edge = √8 R, radius of an atom of Al is:

4.044x10⁻¹⁰m = √8 R

1.430x10⁻¹⁰m = R.

In pm:

1.430x10⁻¹⁰m ₓ (1x10¹²pm / 1m) =

143pm is the radius of an Al atom

The radius of the atom of Al in the FCC structure has been 143 pm.

The FCC lattice has been contributed with atoms at the edge of the cubic structure.

The FCC has consisted of 4 atoms in a lattice.

  • The mass of the unit cell of Al can be calculated as:

[tex]\rm 6.023\;\times\;10^2^3[/tex] atoms = 1 mole

4 atoms = [tex]\rm \dfrac{4}{6.023\;\times\;10^2^3}[/tex] moles

The mass of 1 mole Al has been 26.98 g/mol.

The mass of [tex]\rm \dfrac{4}{6.023\;\times\;10^2^3}[/tex] moles = [tex]\rm \dfrac{4}{6.023\;\times\;10^2^3}[/tex] moles × 26.98 g

The mass of 1 unit cell of Al has been = 1.792 [tex]\rm \bold{\times\;10^-^2^2}[/tex] g.

  • The volume of the Al cell can be calculated as:

Density = [tex]\rm \dfrac{mass}{volume}[/tex]

Volume = Density × Mass

The volume of Al unit cell = 2.71 g/[tex]\rm cm^3[/tex] × 1.792 [tex]\rm \times\;10^-^2^2[/tex] g

The volume of Al cell = 6.613 [tex]\rm \times\;10^-^2^3[/tex] [tex]\rm cm^3[/tex]

  • The volume of the cube has been given as:

Volume = [tex]\rm edge\;length^3[/tex]

6.613 [tex]\rm \times\;10^-^2^3[/tex] [tex]\rm cm^3[/tex] = [tex]\rm edge\;length^3[/tex]

Edge length = [tex]\rm \sqrt[3]{6.613\;\times\;10^-^2^3}[/tex] cm

Edge length = 4.044 [tex]\rm \times\;10^-^8[/tex] cm

Edge length = 4.044 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m.

  • In an FCC lattice structure, the radius of the atom can be given by:

Edge length = [tex]\rm \sqrt{8\;\times\;radius}[/tex]

4.044 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m = [tex]\rm \sqrt{8\;\times\;radius}[/tex]

Radius = 1.430 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m.

1 m = [tex]\rm 10^1^2[/tex] pm

1.430 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m = 143 pm.

The radius of the atom of Al in the FCC structure has been 143 pm.

For more information about the FCC structure, refer to the link:

https://brainly.com/question/14934549