Respuesta :
Answer:
143pm is the radius of an Al atom
Explanation:
In a face centered cubic structure, FCC, there are 4 atoms per unit cell.
First, you need to obtain the mass of an unit cell using molar mass of Aluminium and thus, obtain edge length and knowing Edge = √8R you can find the radius, R, of an Al atom.
Mass of an unit cell
As 1 mole of Al weighs 26.98g. 4 atoms of Al weigh:
4 atoms × (1mole / 6.022x10²³atoms) × (26.98g / mole) = 1.792x10⁻²²g
Edge length
As density of aluminium is 2.71g/cm³, the volume of an unit cell is:
1.792x10⁻²²g × (1cm³ / 2.71g) = 6.613x10⁻²³cm³
And the length of an edge of the cell is:
∛6.613x10⁻²³cm³ = 4.044x10⁻⁸cm = 4.044x10⁻¹⁰m
Radius:
As in FCC structure, Edge = √8 R, radius of an atom of Al is:
4.044x10⁻¹⁰m = √8 R
1.430x10⁻¹⁰m = R.
In pm:
1.430x10⁻¹⁰m ₓ (1x10¹²pm / 1m) =
143pm is the radius of an Al atom
The radius of the atom of Al in the FCC structure has been 143 pm.
The FCC lattice has been contributed with atoms at the edge of the cubic structure.
The FCC has consisted of 4 atoms in a lattice.
- The mass of the unit cell of Al can be calculated as:
[tex]\rm 6.023\;\times\;10^2^3[/tex] atoms = 1 mole
4 atoms = [tex]\rm \dfrac{4}{6.023\;\times\;10^2^3}[/tex] moles
The mass of 1 mole Al has been 26.98 g/mol.
The mass of [tex]\rm \dfrac{4}{6.023\;\times\;10^2^3}[/tex] moles = [tex]\rm \dfrac{4}{6.023\;\times\;10^2^3}[/tex] moles × 26.98 g
The mass of 1 unit cell of Al has been = 1.792 [tex]\rm \bold{\times\;10^-^2^2}[/tex] g.
- The volume of the Al cell can be calculated as:
Density = [tex]\rm \dfrac{mass}{volume}[/tex]
Volume = Density × Mass
The volume of Al unit cell = 2.71 g/[tex]\rm cm^3[/tex] × 1.792 [tex]\rm \times\;10^-^2^2[/tex] g
The volume of Al cell = 6.613 [tex]\rm \times\;10^-^2^3[/tex] [tex]\rm cm^3[/tex]
- The volume of the cube has been given as:
Volume = [tex]\rm edge\;length^3[/tex]
6.613 [tex]\rm \times\;10^-^2^3[/tex] [tex]\rm cm^3[/tex] = [tex]\rm edge\;length^3[/tex]
Edge length = [tex]\rm \sqrt[3]{6.613\;\times\;10^-^2^3}[/tex] cm
Edge length = 4.044 [tex]\rm \times\;10^-^8[/tex] cm
Edge length = 4.044 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m.
- In an FCC lattice structure, the radius of the atom can be given by:
Edge length = [tex]\rm \sqrt{8\;\times\;radius}[/tex]
4.044 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m = [tex]\rm \sqrt{8\;\times\;radius}[/tex]
Radius = 1.430 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m.
1 m = [tex]\rm 10^1^2[/tex] pm
1.430 [tex]\rm \bold{\times\;10^-^1^0}[/tex] m = 143 pm.
The radius of the atom of Al in the FCC structure has been 143 pm.
For more information about the FCC structure, refer to the link:
https://brainly.com/question/14934549