Respuesta :

Answer:

[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,194^{\circ} +360^{\circ}n)[/tex].

Step-by-step explanation:

If a point is [tex]P=(r,\theta)[/tex], the all polar coordinates are defined as

In radian : [tex](r,\theta +2n\pi)\text{ and }(-r,\theta +(2n+1)\pi)[/tex]

In degree : [tex](r,\theta +360^{\circ}n)\text{ and }(-r,\theta +(2n+1)180^{\circ})[/tex]

where, n is any integer.

The given point is

[tex]P=(2,14^{\circ})[/tex]

So, all polar coordinates are  

[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,14^{\circ} +(2n+1)180^{\circ})[/tex]

[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,14^{\circ} +360^{\circ}n+180^{\circ})[/tex]

[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,194^{\circ} +360^{\circ}n)[/tex]

Therefore, the required polar coordinates are [tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,194^{\circ} +360^{\circ}n)[/tex], where n is any integer.