What is the difference?
х
4
XP-2x-15 x2 + 2x-35
x2 + 3x+12
(x-3)(x-5)(x+7)
x(x+3-12)
(x+3)(x-5)(x+7)
x2+3x+12
(x+3)(x-5)(x+7)
x² + 3x-12
(x+3)(x-5)(x+7)

Respuesta :

Answer:

[tex]\frac{x^2+3x -12}{(x-5) (x +3)(x+7)}[/tex]

Step-by-step explanation:

Given

[tex]\frac{x}{x^2-2x-15} - \frac{4}{x^2+2x-35}[/tex]

Required

Calculate the difference

We start by factorizing the denominator of both fractions

[tex]\frac{x}{x^2-2x-15} - \frac{4}{x^2+2x-35}[/tex]

[tex]\frac{x}{x^2+3x - 5x -15} - \frac{4}{x^2+7x - 5x-35}[/tex]

[tex]\frac{x}{x(x+3) - 5(x +3)} - \frac{4}{x(x+7) - 5(x+7)}[/tex]

[tex]\frac{x}{(x-5) (x +3)} - \frac{4}{(x-5)(x+7)}[/tex]

Take LCM

[tex]\frac{x(x+7) - 4(x +3)}{(x-5) (x +3)(x+7)}[/tex]

Open Brackets

[tex]\frac{x^2+7x - 4x -12}{(x-5) (x +3)(x+7)}[/tex]

[tex]\frac{x^2+3x -12}{(x-5) (x +3)(x+7)}[/tex]

This can't be simplified any further;