Suppose the sediment density(g/cm) of a randomly selected specimenfrom a certain region is normally distributed with mean 2.65 andstandard deviation .85.

a) If a random sample of 25 specimens is selected, what is theprobability that the sample average sediment density is at most3.00? Between 2.65 and 3.00

b) How large a sample size would be required to ensure thatthe first probability in part (a) is at least .99 ??

Respuesta :

Answer:

ai )  [tex]P(\= X \le 3.0 ) =0.980[/tex]

aii)  [tex]P(2.65 \le \= X \le 3.00) = 0.480[/tex]  

b )   [tex]n = 32[/tex]

Step-by-step explanation:

From the question we are told that  

     The mean is  [tex]\mu = 2.65[/tex]

      The standard deviation is [tex]\sigma = 0.85[/tex]

Let the random  sediment density be  X

given that the  sediment density is normally distributed it implies that

      X  N(2.65 ,  0.85)

Now  probability that the sample average is  at 3.0 is mathematically represented as

        [tex]P(\= X \le 3.0 ) = P[\frac{\= X - \mu} {\frac{\sigma }{\sqrt{n} } } \le \frac{3.0 - \mu}{\frac{ \sigma}{\sqrt{n} } } ][/tex]

Here n is the sample  size  = 25 and  [tex]\= X[/tex] is the sample  mean  

  Now  Generally the  Z-value is obtained using this  formula  

           [tex]Z = \frac{\= X - \mu} {\frac{\sigma }{\sqrt{n} } }[/tex]

Thus  

       [tex]P(\= X \le 3.0 ) = P[Z \le \frac{3.0 - 2.35}{\frac{ 0.85}{\sqrt{25} } } ][/tex]

      [tex]P(\= X \le 3.0 ) = P[Z \le 2.06 ][/tex]

From the z-table the z-score is 0.980

 Thus  

       [tex]P(\= X \le 3.0 ) =0.980[/tex]

Now  probability that the sample average is between 2.65 and 3.00  is  mathematically evaluated as

           [tex]P(2.65 \le \= X \le 3.00) = P [\frac{2.65 - \mu }{ \frac{\sigma }{\sqrt{n} } } < \frac{\= X - \mu }{ \frac{\sigma }{\sqrt{n} } } < \frac{3.0 - \mu }{ \frac{\sigma }{\sqrt{n} } }][/tex]  

          [tex]P(2.65 \le \= X \le 3.00) = P [\frac{2.65 - 2.65 }{ \frac{0.85 }{\sqrt{25} } } <Z < \frac{3.0 - 2.65 }{ \frac{0.85 }{\sqrt{25} } }][/tex]

         [tex]P(2.65 \le \= X \le 3.00) = P[0 < Z< 2.06][/tex]    

       [tex]P(2.65 \le \= X \le 3.00) = P(Z < 2.06) - P(Z<0)[/tex]    

From the z-table  

        [tex]P(2.65 \le \= X \le 3.00) = 0.980 - 0.50[/tex]    

        [tex]P(2.65 \le \= X \le 3.00) = 0.480[/tex]  

Now  from the question  

         [tex]P(\= X \le 3.0 ) =0.99[/tex]

=>       [tex]P(\= X \le 3.0 ) = P[Z \le \frac{3.0 - 2.35}{\frac{ 0.85}{\sqrt{n} } } ] = 0.99[/tex]

Generally the critical value of  z  for a one tail test such as the one we are treating that is  under the area  0.99  is  [tex]t_z = 2.33[/tex] this is obtained from the critical value table  

So  

        [tex]t_z = \frac{3.0 - 2.35}{\frac{ 0.85}{\sqrt{n} } }[/tex]

        [tex]2.33 = \frac{3.0 - 2.35}{\frac{ 0.85}{\sqrt{n} } }[/tex]

=>       [tex]n = 32[/tex]