Answer:
The statistic for this case would be:
[tex] z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}[/tex]
And replacing we got:
[tex] z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92[/tex]
Step-by-step explanation:
For this case we have the following info:
[tex] n =700[/tex] represent the sample size
[tex] X= 305[/tex] represent the number of employees that earn more than 50000
[tex]\hat p=\frac{305}{700}= 0.436[/tex]
We want to test the following hypothesis:
Nul hyp. [tex] p \leq 0.4[/tex]
Alternative hyp : [tex] p>0.4[/tex]
The statistic for this case would be:
[tex] z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}[/tex]
And replacing we got:
[tex] z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92[/tex]
And the p value would be given by:
[tex] p_v = P(z>1.922)= 0.0274[/tex]