Respuesta :

Answer:

The correct answer is:

[tex]g(x) = x+1[/tex]

Step-by-step explanation:

Given that:

[tex]h(x) = f\circ g(x)= \sqrt[3]{x+3}[/tex]

[tex]f(x) = \sqrt[3]{x+2}[/tex]

To find:

[tex]g(x) = ?[/tex]

Solution:

Let [tex]g(x) = m[/tex]

We have

[tex]f\circ g(x)= \sqrt[3]{x+3}\\OR\\f( g(x))= \sqrt[3]{x+3}[/tex]...... (1)

Now, we have let:

[tex]g(x) = m\\\therefore f(g(x)) = f(m)[/tex]

Putting x = in f(x), we get

[tex]f(x) = \sqrt[3]{x+2}\\\Rightarrow f(m) = \sqrt[3]{m+2}[/tex]....... (2)

Comparing equation (1) and (2):

[tex]\sqrt[3]{x+3} =\sqrt[3]{m+2}[/tex]

Taking cubes both sides:

[tex]x+3=m+2\\\Rightarrow m = x+3-2\\\Rightarrow m = x+1[/tex]

[tex]\therefore g(x) = x+1[/tex]

Hence,

The correct answer is:

[tex]g(x) = x+1[/tex]