Respuesta :

Answer:

[tex]T_n = \left \{ {{T_1=2} \atop {T_n =-5T_{n-1}}} n>1 \right.[/tex]

Step-by-step explanation:

Given

Geometric sequence: 2, -10, 50, -250

Required

Recursive formula of the sequence

We start by naming each sequence

[tex]T_1 = 2\\T_2 = -10\\T_3 = 50\\T_4 = -250[/tex]

Represent each term in relation to the previous term (except T1)

[tex]T_1 = 2\\T_2 =2 * -5\\T_3 = -10 * -5\\T_4 = 50 * -5[/tex]

Recall that

[tex]T_1 = 2\\T_2 = -10\\T_3 = 50\\T_4 = -250[/tex]

So, at this point; we have to make substitutions

[tex]T_1 = 2\\T_2 =T_1 * -5\\T_3 = T_2 * -5\\T_4 = T_3 * -5[/tex]

Subtract 1 from each term on the right hand side

[tex]T_1 = 2\\T_2 =T_{2-1} * -5\\T_3 = T_{3-1} * -5\\T_4 = T_{4-1} * -5[/tex]

Replace each term greater than 1 by n

[tex]T_1 = 2\\T_n =T_{n-1} * -5\\T_n = T_{n-1} * -5\\T_n = T_{n-1} * -5[/tex]

Remove repetition

[tex]T_1 = 2\\T_n =T_{n-1} * -5[/tex]

[tex]T_1 = 2\\T_n =-5T_{n-1}[/tex]

Hence, the recursive formula is

[tex]T_n = \left \{ {{T_1=2} \atop {T_n =-5T_{n-1}}} n>1 \right.[/tex]