Answer:
200 feet
Step-by-step explanation:
Area of the warehouse [tex]=60,000$ ft^2[/tex]
Let the length of the warehouse=l
The warehouse's width is exactly [tex]\dfrac23[/tex] of its length
Therefore: Width of the warehouse[tex]=\dfrac23l[/tex]
Area =Length X Width
Therefore:
[tex]\dfrac23l*l=60000\\$Cross multiply\\2l^2=60000*3\\2l^2=180000\\$Divide both sides by 2\\2l^2 \div 2=180000 \div 2\\l^2=90000\\l^2=300^2\\$Length, l=300 feet\\Recall: Width =\dfrac23l\\$Therefore, Width of the warehouse=\dfrac23*300=200$ feet[/tex]