Answer:
The average number of activations per 25 minutes is 2.5.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!} [/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
In this question:
For 2 hours = 2*60 = 120 minutes, the mean is 16 times.
To find for 25 minutes, we use a rule of three.
120 minutes - 16 times
25 minutes - m times
[tex]120m = 12*25[/tex]
[tex]m = \frac{12*25}{120}[/tex]
[tex]m = 2.5[/tex]
The average number of activations per 25 minutes is 2.5.