A Deloitte employment survey asked a sample of human resource executives how their company planned to change its workforce over the next months. A categorical response variable showed three options: The company plans to hire and add to the number of employees, the company plans no change in the number of employees, or the company plans to lay off and reduce the number of employees. Another categorical variable indicated if the company was private or public. Sample data for companies are summarized as follows. Company Employment Plan Private Public Add Employees 39 32 No Change 21 36 Lay Off Employees 12 44 a. Conduct a test of independence to determine if the employment plan for the next months is independent of the type of company. At a level of significance. Compute the value of the test statistic (to 2 decimals).

Respuesta :

The missing figures in the question is shown in bold format.

Also the table is better constructed for clearer understanding when answering the question.

A Deloitte employment survey asked a sample of human resource executives how their company planned to change its workforce over the next 12 months. A categorical response variable showed three options: The company plans to hire and add to the number of employees, the company plans no change in the number of employees, or the company plans to lay off and reduce the number of employees. Another categorical variable indicated if the company was private or public. Sample data for  180 companies are summarized as follows.

                                                             Company

Employment Plan                        Private                           Public

Add Employees                                39                                32

No Change                                        21                                36

Lay Off Employees                            12                                44

a. Conduct a test of independence to determine if the employment plan for the next 12 months is independent of the type of company. At a level of  0.05 significance. Compute the value of the test statistic (to 2 decimals).

Answer:

Explanation:

From the table in the question; we can see the changes in employees adding, shedding, or not changing their staffing.

                                  Company

Plan                            Private                          Public

Add                              39                                  32

Number Change          21                                   36

Lay Off                           12                                   44

The hypothesis are:

[tex]\mathbf{ H_o : Column \ independent \ of \ row}\\ \\ \mathbf{ H_a : Column \ is \ dependent \ of \ row}[/tex]

Using the following relation of variables given to determine expected frequencies ; we have :

[tex]\mathbf{e_f = \dfrac{(row _i)(column_j)}{Total \ sample}}[/tex]

From the above table ; the first row show the total entries of 72

The first column shows the total of 72

[tex]\mathbf{e_f = \dfrac{(39+32)(72)}{180}} \\ \\ \mathbf{e_f = 28.80}}[/tex]

The expected value for the first row, first column is 28.80

Repeating the same process for others;

For the first row ; second column we have :

[tex]\mathbf{e_f = \dfrac{(39+32)(112)}{180}} \\ \\ \mathbf{e_f = 44.80}}[/tex]

For the second row ; first column we have :

[tex]\mathbf{e_f = \dfrac{(21+36)(72)}{180}} \\ \\ \mathbf{e_f = 22.80}}[/tex]

For the second row ; second column we have :

[tex]\mathbf{e_f = \dfrac{(21+36)(112)}{180}} \\ \\ \mathbf{e_f = 35.47}}[/tex]

For the third row ; first column we have :

[tex]\mathbf{e_f = \dfrac{(12+44)(72)}{180}} \\ \\ \mathbf{e_f = 22.40}}[/tex]

For the third  row ; second column we have :

[tex]\mathbf{e_f = \dfrac{(12+44)(112)}{180}} \\ \\ \mathbf{e_f = 34.84}}[/tex]

                                  Company

Plan                            Private                  Public             Total

Add                              28.80                      44.80          73.60                            

Number Change         22.80                      35.47           58.27        

Lay Off                         22.40                      34.84           57.24        

Converting the table to chi- squared using the relation.

[tex]\mathbf{x^2 = \sum_i ( \dfrac{f_y-e_f}{e_f})^2}[/tex]

where;

[tex]f_y[/tex] = observed frequency from the original table

From the original above table ;

for the first row (1)

the observed frequency is = 39

the expected frequency  is = 28.80

[tex]\mathbf{x^2 = \sum_i ( \dfrac{39-28.80}{28.80})^2} \\ \\ \mathbf{x^2 =3.6125}[/tex]

for the first row (2)

the observed frequency is = 32

the expected frequency  is = 44.80

[tex]\mathbf{x^2 = \sum_i ( \dfrac{32-44.80}{44.80})^2} \\ \\ \mathbf{x^2 =3.6571}[/tex]

for the second row (1)

the observed frequency is = 21

the expected frequency  is = 22.80

[tex]\mathbf{x^2 = \sum_i ( \dfrac{21-22.80}{22.80})^2} \\ \\ \mathbf{x^2 =0.1421}[/tex]

for the second row (2)

the observed frequency is = 36

the expected frequency  is = 35.47

[tex]\mathbf{x^2 = \sum_i ( \dfrac{36-35.47}{35.47})^2} \\ \\ \mathbf{x^2 =0.0079}[/tex]

for the third row (1)

the observed frequency is = 12

the expected frequency  is = 22.40

[tex]\mathbf{x^2 = \sum_i ( \dfrac{12-22.40}{22.40})^2} \\ \\ \mathbf{x^2 =4.8286}[/tex]

for the third row (2)

the observed frequency is = 44

the expected frequency  is = 34.84

[tex]\mathbf{x^2 = \sum_i ( \dfrac{44-34.84}{34.84})^2} \\ \\ \mathbf{x^2 =2.4083}[/tex]

                                  Company

Plan                            Private                  Public             Total

Add                             3.6125                  3.6571          7.2696                      

Number Change        0.1421                   0.0079         0.15      

Lay Off                       4.8286                  2.4083         7.2369

Total                                                                        [tex]x^2 =[/tex] 14.657

Hence, the total chi-square = 14.657;

To find the value for p; we need to determine the degree of freedom

df = (2-1)(3-1)

that result to a degree of freedom of 2

From the chi square chart at the chi-square is 14.657 and degree of freedom is 2 ; the p value is between 0.1 and 0.005. Since this makes p-value  less than 0.05.

We rejected [tex]\mathbf{ H_o}[/tex]

Thus; the variables are dependent. We can conclude that the employment plan and the company are significantly related.