Two samples are randomly selected from each population. The sample statistics are given below.
n1 = 150 n2 = 275
x1 = 72.86 -x2 = 67.34
s1 = 15.98 s2 = 35.67
The value of the standardized test statistic to test the claim that μ1 > μ2 is _________.
-2.19
2.19
3.15
-3.15

Respuesta :

Answer:

Null hypothesis: [tex]\mu_1 \leq \mu_2[/tex]

Alternative hypothesis: [tex]\mu_1 > \mu_2[/tex]

The statistic is given by:

[tex]t= \frac{\bar X_1 -\bar X_2}{\sqrt{\frac{s^2_1}{n_1} +\frac{s^2_2}{n_2}}}[/tex]

And replacing we got:

[tex] t=\frac{72.86-67.34}{\sqrt{\frac{15.98^2}{150} +\frac{35.67^2}{275}}}=2.194[/tex]

And the best option would be:

2.19

Step-by-step explanation:

We have the following info given:

n1 = 150 n2 = 275

[tex]\bar x_1 = 72.86, \bar x_2 = 67.34[/tex]

s1 = 15.98 s2 = 35.67

We want to test the following hypothesis:

Null hypothesis: [tex]\mu_1 \leq \mu_2[/tex]

Alternative hypothesis: [tex]\mu_1 > \mu_2[/tex]

The statistic is given by:

[tex]t= \frac{\bar X_1 -\bar X_2}{\sqrt{\frac{s^2_1}{n_1} +\frac{s^2_2}{n_2}}}[/tex]

And replacing we got:

[tex] t=\frac{72.86-67.34}{\sqrt{\frac{15.98^2}{150} +\frac{35.67^2}{275}}}=2.194[/tex]

And the best option would be:

2.19