contestada

250cm3 of fresh water of density 1000kgm-3 is mixed with 100cm3 of sea water of density 1030kgm-3. Calculate the density of the mixture. *​

Respuesta :

Answer:

[tex] m_{fresh}= 1000 \frac{Kg}{m^3} * 2.5x10^{-4} m^3 = 0.25 Kg[/tex]

And we can do a similar procedure for the sea water:

[tex] m_{sea}= \rho_{sea} V_{sea} [/tex]

And after convert the volume to m^3 we got:

[tex] m_{sea}= 1030 \frac{Kg}{m^3} * 1x10^{-4} m^3 = 0.103 Kg[/tex]

And then the density for the mixture would be given by:

[tex] \rho_{mixture}= \frac{m_{fresh} +m_{sea}}{v_{fresh} +v_{sea}}[/tex]

And replacing we got:

[tex] \rho_{mixt}= \frac{0.25 +0.103 Kg}{2.5x10^{-4} m^3 +1x10^{-4} m^3} = 1008.571 \frac{Kg}{m^3}[/tex]

Step-by-step explanation:

For this case we can begin calculating the mass for each type of water:

[tex] m_{fresh}= \rho_{fresh} V_{fresh} [/tex]

And after convert the volume to m^3 we got:

[tex] m_{fresh}= 1000 \frac{Kg}{m^3} * 2.5x10^{-4} m^3 = 0.25 Kg[/tex]

And we can do a similar procedure for the sea water:

[tex] m_{sea}= \rho_{sea} V_{sea} [/tex]

And after convert the volume to m^3 we got:

[tex] m_{sea}= 1030 \frac{Kg}{m^3} * 1x10^{-4} m^3 = 0.103 Kg[/tex]

And then the density for the mixture would be given by:

[tex] \rho_{mixture}= \frac{m_{fresh} +m_{sea}}{v_{fresh} +v_{sea}}[/tex]

And replacing we got:

[tex] \rho_{mixt}= \frac{0.25 +0.103 Kg}{2.5x10^{-4} m^3 +1x10^{-4} m^3} = 1008.571 \frac{Kg}{m^3}[/tex]