Using a density of air to be 1.21kg/m3, the diameter of the bottom part of the filter as 0.15m (assume circular cross-section), and the power fit of your Trendline equation,calculate the drag coefficient. Solve for it first (see video) and then plug in the values.

Respuesta :

Answer:

The  drag coefficient is  [tex]D_z = 1.30512[/tex]  

Explanation:

From the question we are told that

     The density of air is  [tex]\rho_a = 1.21 \ kg/m^3[/tex]

     The diameter of bottom part is  [tex]d = 0.15 \ m[/tex]

The  power trend-line  equation is mathematically represented as

      [tex]F_{\alpha } = 0.9226 * v^{0.5737}[/tex]

let assume that the velocity is  20 m/s

Then

      [tex]F_{\alpha } = 0.9226 * 20^{0.5737}[/tex]

       [tex]F_{\alpha } = 5.1453 \ N[/tex]

The drag coefficient is mathematically represented as

      [tex]D_z = \frac{2 F_{\alpha } }{A \rho v^2 }[/tex]

Where  

     [tex]F_{\alpha }[/tex] is the drag force

      [tex]\rho[/tex] is the density of the fluid

       [tex]v[/tex] is the flow velocity

       A is the area which mathematically evaluated as

       [tex]A = \pi r^2 = \pi \frac{d^2}{4}[/tex]

substituting values

     [tex]A = 3.142 * \frac{(0.15)^2}{4}[/tex]

     [tex]A = 0.0176 \ m^2[/tex]

Then

   [tex]D_z = \frac{2 * 5.1453 }{0.0176 * 1.12 * 20^2 }[/tex]

   [tex]D_z = 1.30512[/tex]