Answer:
O U ⊆ A ∪ B True
O U ⊆ A ∩ B False
O A ∪ B ⊆ U True
O B ⊆ U True
O A ⊆ U True
O A ∩ B ⊆ U True
Step-by-step explanation:
To prove the first part
[tex]\text{If} \,\,\,\,\,\, A^{c} \subseteq B \,\,\,\,\,\text{then} \,\,\,\,\, A \cup B = U[/tex]
Remember that any set is a subset of the universal set. Therefore it is true that
[tex]A \cup B \subseteq U[/tex]
Now, given any [tex]x \in U[/tex] it is true that
[tex]x \in B \,\,\,\, \text{or} \,\,\,\, x \notin B[/tex]
Now according to the information given initially
[tex]\text{If} \,\,\,\,\, x \notin B \,\,\,\,\, \text{then} \,\,\,\,\, x \notin A^{c}[/tex]
And then you know that
[tex]\text{If} \,\,\,\,\, x \notin A^{c} \,\,\,\,\,\text{then} \,\,\,\,\,\,\, x \in A[/tex]
Therefore [tex]U \subseteq A \cup B[/tex] and using double inclusion
[tex]U = A \cup B[/tex].
Now using the information just exposed
O U ⊆ A ∪ B True
O U ⊆ A ∩ B False
O A ∪ B ⊆ U True
O B ⊆ U True
O A ⊆ U True
O A ∩ B ⊆ U True