Respuesta :
In 1905, Albert Einstein provided an explanation of the photoelectric effect, an experiment that the wave theory of light failed to explain. He did so by postulating the existence of photons, quanta of light energy with particulate qualities.
Answer: sorry for it being long.
Explanation: Historians still call the year 1905 the annus mirabilis, the miracle year because in that year Einstein published four remarkable scientific papers ranging from the smallest scale to the largest, through fundamental problems about the nature of energy, matter, motion, time and space.
In March 1905 , Einstein created the quantum theory of light, the idea that light exists as tiny packets, or particles, which he called photons. Alongside Max Planck's work on quanta of heat Einstein proposed one of the most shocking idea in twentieth century physics: we live in a quantum universe, one built out of tiny, discrete chunks of energy and matter.
Next, in April and May, Einstein published two papers. In one he invented a new method of counting and determining the size of the atoms or molecules in a given space and in the other he explains the phenomenon of Brownian motion. The net result was a proof that atoms actually exist - still an issue at that time - and the end to a millennia-old debate on the fundamental nature of the chemical elements.
And then, in June, Einstein completed special relativity - which added a twist to the story: Einstein's March paper treated light as particles, but special relativity sees light as a continuous field of waves. Such a contradiction took a supremely confident mind to propose. Einstein, age 26, saw light as wave and particle, picking the attribute he needed to confront each problem in turn.
Einstein wasn't finished yet. Later in 1905 came an extension of special relativity in which Einstein proved that energy and matter are linked in the most famous relationship in physics:
E=mc2. (The energy content of a body is equal to the mass of the body times the speed of light squared).
This equation predicted an evolution of energy roughly a million times more efficient than that obtained by ordinary physiochemical means. At first, even Einstein did not grasp the full implications of his formula, but even then he suggested that the heat produced by radium could mark the conversion of tiny amounts of the mass of the radium salts into energy.
And after 1905, Einstein achieved what no one since has equaled: a twenty year run at the cutting edge of physics. For all the miracles of his miracle year, his best work was still to come:
In 1907, he confronted the problem of gravitation. Einstein began his work with one crucial insight: gravity and acceleration are equivalent, two facets of the same phenomenon.
Before anyone else, Einstein recognized the essential dualism in nature, the co-existence of particles and waves at the level of quanta. In 1911 he declared resolving the quantum issue to be the central problem of physics.
Even the minor works resonated. For example, in 1910, Einstein answered a basic question: 'Why is the sky blue?' His paper on the phenomenon called critical opalescence solved the problem by examining the cumulative effect of the scattering of light by individual molecules in the atmosphere.
Then in 1915, Einstein completed the General Theory of Relativity - the product of eight years of work on the problem of gravity. In general relativity Einstein shows that matter and energy actually mold the shape of space and the flow of time. What we feel as the 'force' of gravity is simply the sensation of following the shortest path we can through curved, four-dimensional space-time. It is a radical vision: space is no longer the box the universe comes in; instead, space and time, matter and energy are, as Einstein proves, locked together in the most intimate embrace.