Answer:
Maximum force, [tex]F_{max} = 42 kN[/tex]
Explanation:
Maximum Stress, [tex]\sigma_{max} = 2.1 * 10^{7} N/m^{2}[/tex]
The diameter of the material, d = 50.5 mm = 0.0505 m
The area of the material, [tex]A = (\pi d^{2} )/4[/tex]
[tex]A = \frac{\pi * 0.0505^{2} }{4} \\A = 0.002 m^{2}[/tex]
The formula for the maximum stress that the material can take is given by:
[tex]\sigma_{max} = \frac{F_{max} }{A} \\2.1 * 10^7 = \frac{F_{max} }{0.002}\\F_{max} = 2.1 * 10^7 * 0.002\\F_{max} = 4.2 * 10^4 N\\F_{max} = 42 kN[/tex]