contestada

Find a formula for the function f(x) such that [tex]f'(x)=\frac{cos(x)}{x}[/tex]and f(1)=3.

Respuesta :

Answer:

We want to find f(x) where f'(x) = cos(x)/x

Then we need to integrate f'(x) over x.

[tex]f(x) = \int\limits {f'(x)} \, dx = \int\limits {\frac{cos(x)}{x} } \, dx[/tex]

We must use a Taylor/McLauren polynomial to solve it.

Cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! .....

then the integral is:

[tex]\int\limits {cos(x)/x \, dx = \int\limits {\frac{1}{x} - \frac{x}{2!} + \frac{x^3}{4!} .... \, dx[/tex]

[tex]= lnIxI - \frac{x^2}{2*2!} + \frac{x^4}{4*4!} + .... \frac{x^{2n} }{(2n)*(2n)!} + C[/tex]

And we can write this as:

f(x) = lnIxI + ∑(-1)^n*(x^2n/(2n*(2n)!)) + C

fron n = 1 to n = ∞

and f(1) = 3.

ln(1) +  ∑(-1)^n*(1/(2n*(2n)!)) + C = 3

 ∑(-1)^n*(1/(2n*(2n)!)) + C = 3

The sum, that is an alternating series and the terms are decreasing, so it converges, and the value can be obtained with a calculator, it is something around -0.24

-0.24 + C = 3

C = 3 - 0.24 = 2.76

f(x) = lnIxI + ∑(-1)^n*(x^2n/(2n*(2n)!)) + 2.76