Respuesta :
The original function is given by:
[tex]f (x) = x ^ 2 [/tex]
We apply the following transformation:
Horizontal displacements:
Suppose k> 0
To move the graph k units to the right, we must graph f (x-k)
Applying the transformation for k = 4 we have:
[tex]g (x) = f (x-4) g (x) = (x-4) ^ 2 g (x) = x ^ 2 - 8x + 16[/tex]
Answer:
B. Right by 4 units
[tex]f (x) = x ^ 2 [/tex]
We apply the following transformation:
Horizontal displacements:
Suppose k> 0
To move the graph k units to the right, we must graph f (x-k)
Applying the transformation for k = 4 we have:
[tex]g (x) = f (x-4) g (x) = (x-4) ^ 2 g (x) = x ^ 2 - 8x + 16[/tex]
Answer:
B. Right by 4 units
Answer:
Option B is correct.
Right by 4 units
Step-by-step explanation:
Given the function : [tex]f(x) = x^2[/tex] and [tex]g(x)=x^2-8x+16[/tex]
Horizontal shift: Given a function f , a new function g(x) = f(x-h) , where h is constant is a horizontal shift of the function f.
* If h is positive, the graph will shift right.
* if h is negative, then the graph will shift left.
[tex]g(x)=x^2-8x+16[/tex]
[tex]x^2 -4x-4x +16[/tex]
[tex]x(x-4)-4(x-4)[/tex]
Take (x-4) common;
[tex](x-4)(x-4)[/tex] or
[tex](x-4)^2[/tex] [ Using [tex]a^m \cdot a^n = a^{m+n}[/tex] ]
Then, the function becomes;
g(x) = [tex](x-4)^2[/tex]
A function g(x)=[tex](x-4)^2[/tex] , this function comes from the parent function [tex]f(x) = x^2[/tex] with constant 4 subtract to it, this gives the horizontal shift right 4 units. so, take the parent function and shift 4 units right.
Therefore, a function f(x) be shifted right by 4 unit to obtain g(x)