For what numbers theta is f(theta)=tan(theta) not defined? f(theta)=tan(theta) is not defined for numbers that are (even multiples, odd multiples, multiples) of (45*, 90*, 180*). Select an answer from each set of parentheses.

Respuesta :


The numbers of theta that results to an undefined number for tan theta is odd multiples of pi/2. This means the answer to this problem is odd multiples of 90 degrees. you can try a calculator to find the answer since tan 90 is equal to 1/0 equal to infinity which is then undefined

Answer:

Hence, [tex]tan\theta[/tex] is not defined for odd multiples of [tex]90^{\circ}[/tex].

Step-by-step explanation:

We are given that [tex]f(\theta)=tan(\theta)[/tex]

We have to find the value of theta for which[tex]tan\theta[/tex]

We know that when [tex]sin90^{\circ}=1[/tex]

and [tex]cos90^{\circ}=0[/tex]

Then [tex]tan90^{\circ}=\frac{sin90^{\circ}}{cos90^{\circ}}[/tex]

Substituting values

[tex]tan90^{\circ}=\frac{1}{0}[/tex]

[tex]tan90^{\circ}[/tex] is not defined .

If we take

[tex]\theta=45^{\circ}[/tex]

[tex]tan45^{\circ}=\frac{1}{\sqrt3}[/tex]

Hence, [tex]\tan\theta[/tex]is defined for odd multiples of[tex]45^{\circ}[/tex].

If we take [tex]\theta= 180^{\circ}[/tex]

Then [tex]tan180^{\circ}=\frac{sin180^{\circ}}{cos180^{\circ}}[/tex]

We know that [tex]sin180^{\circ}=0\;and cos90^{\circ}=-1[/tex]

Therefore. [tex]tan180^{\circ}=\frac{0}{-1}=0[/tex]

We know that 180 is even multiple of 90 and even multiple of 45 .Hence, we can say [tex]tan\theta[/tex] is no defined for odd multiples of 90

because[tex] tan\frac{3\pi}{2}=tan(2\pi-\frac{\pi}{2})[/tex]

[tex]=-tan\frac{\pi}{2}[/tex]

[tex]=-tan90^{\circ}[/tex]

=not defined.

Hence, [tex]tan\theta[/tex] is not defined for odd multiples of [tex]90^{\circ}[/tex].