Respuesta :
Solutions
The given question is a doable program.
Def pal():
for a in range [tex](0,10):[/tex]
for b in range[tex](0,10):[/tex]
for c in range[tex](0,10):[/tex]
for d in range[tex](0,10):[/tex]
[tex]c^1 =int(d*d) [/tex] %10)
[tex] y= (c*d + c^1)[/tex] %10
[tex] c^2=int((c*d+c^1)/10)[/tex]
[tex] z =(b*d +c^2)[/tex] %10
[tex]c^3=int((b*d+c^2)/10)[/tex]
[tex]w=(a*d+c^3)[/tex] %10
if (a!=b and a!=c and a!=d and b!=c and b!=d and c!=d and x==a and y==b and z==c and w==d ):
print("a = ", a)
print("b = ", b)
print("c = ", c)
print("d = ", d)
[tex]a= 1 b= 0 c=8 d=9[/tex]
Plug in the numbers to solve the problem.
The 'int' function is the same thing as floor.
The % symbol is the modulo operator
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
In base 10 expanded form [tex]ABCD=A*1000+B*100+C*10+D [/tex]
and [tex]DCBA=D*1000+C*100+B*10+A[/tex] , where A,B,C,D are counting numbers.
We are given [tex]ABCD*D=DCBA [/tex]
Converting to decimal expanded forms we get
[tex](A*1000+B*100+C*10+D)*D =D*1000+C*100+B*10+A [/tex]
Distributing the above equation
[tex]AD*1000+BD*100+CD*10+D^2 =D*1000+C*100+B*10+A [/tex]
brute force solution works, but is best done by a computer not by hand.
We could also try to use modular math.
[tex]d^2 mod 10 = a[/tex]
[tex]cd+[d^2/10]mod10=b[/tex]
[tex]bd+[(cd+[d^2/10])/10]mod10=c[/tex]
[tex]ad+[(bd+[(cd+[d^2/10])]/10)/10]mod10=a))[/tex]
[tex]1089 * 9 = 9801[/tex]
The given question is a doable program.
Def pal():
for a in range [tex](0,10):[/tex]
for b in range[tex](0,10):[/tex]
for c in range[tex](0,10):[/tex]
for d in range[tex](0,10):[/tex]
[tex]c^1 =int(d*d) [/tex] %10)
[tex] y= (c*d + c^1)[/tex] %10
[tex] c^2=int((c*d+c^1)/10)[/tex]
[tex] z =(b*d +c^2)[/tex] %10
[tex]c^3=int((b*d+c^2)/10)[/tex]
[tex]w=(a*d+c^3)[/tex] %10
if (a!=b and a!=c and a!=d and b!=c and b!=d and c!=d and x==a and y==b and z==c and w==d ):
print("a = ", a)
print("b = ", b)
print("c = ", c)
print("d = ", d)
[tex]a= 1 b= 0 c=8 d=9[/tex]
Plug in the numbers to solve the problem.
The 'int' function is the same thing as floor.
The % symbol is the modulo operator
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
In base 10 expanded form [tex]ABCD=A*1000+B*100+C*10+D [/tex]
and [tex]DCBA=D*1000+C*100+B*10+A[/tex] , where A,B,C,D are counting numbers.
We are given [tex]ABCD*D=DCBA [/tex]
Converting to decimal expanded forms we get
[tex](A*1000+B*100+C*10+D)*D =D*1000+C*100+B*10+A [/tex]
Distributing the above equation
[tex]AD*1000+BD*100+CD*10+D^2 =D*1000+C*100+B*10+A [/tex]
brute force solution works, but is best done by a computer not by hand.
We could also try to use modular math.
[tex]d^2 mod 10 = a[/tex]
[tex]cd+[d^2/10]mod10=b[/tex]
[tex]bd+[(cd+[d^2/10])/10]mod10=c[/tex]
[tex]ad+[(bd+[(cd+[d^2/10])]/10)/10]mod10=a))[/tex]
[tex]1089 * 9 = 9801[/tex]
A can only be 1, because D*A=D, and only *1 can get to that.
So B is 0, if not then the thousands place might not be D
In DCBA, the one's place is 1
D squared is 1, so D is 9 (because if D=1, then ABCD*D=ABCD)
So C is 8 because it's the only one that's valid.
The final answer is A=1 B=0 C=8 D=9, and 1089*9=9801, so the statement hold true.
So B is 0, if not then the thousands place might not be D
In DCBA, the one's place is 1
D squared is 1, so D is 9 (because if D=1, then ABCD*D=ABCD)
So C is 8 because it's the only one that's valid.
The final answer is A=1 B=0 C=8 D=9, and 1089*9=9801, so the statement hold true.