contestada

When 10x^3+mx^2- x+10 is divided by 5x-3, the quotient is 2x^2+no-2 and the remainder is 4. What is the value of m and n?

Respuesta :

caylus
Hello,

10x^3+mx^2-x+10=(5x-3)(2x^2+nx-2)+4
=10x^3-6x^2+5nx^2-3nx-10x+6+4
==>
 -3n-10=-1  ==>3n=-9==>n=-3
 -6+5n=m  ==>-6-15=m==>m=-21



When [tex]10x^3+mx^2- x+10[/tex] is divided by[tex]5x-3[/tex], the quotient is [tex]2x^2+nx-2[/tex]and the remainder is 4.

The value of m=-21 and n=-3

Given :

When [tex]10x^3+mx^2- x+10[/tex] is divided by[tex]5x-3[/tex], the quotient is [tex]2x^2+nx-2[/tex]and the remainder is 4.

We frame equation using quotient and remainder

Dividend = quotient (divisor)+ remainder

[tex]10x^3+mx^2- x+10=(2x^2+nx-2)(5x-3)+4\\10x^3+mx^2- x+10=10x^3-6x^2+5nx^2-3nx-10x+6+4\\\\10x^3+mx^2- x+10=10x^3+x^2(5n-6)+x(-3n-10)+10\\\\[/tex]

Now we make x^2 parts are equal and solve for m  and n

Also we make x parts are equal

[tex]-3n-10=-1\\-3n=-1+10\\-3n=9\\n=-3[/tex]

Now make x^2 terms equal

[tex]5n-6=m\\5(-3)-6=m\\m=-21[/tex]

The value of m  and n are

[tex]m=-21 and n=-3[/tex]

Learn more  brainly.com/question/2867130