Suppose a solid is formed by revolving the function f(x)=2+mx around the x-axis where 0≤m<1 and 0≤x≤1, and a washer is created by drilling a hole in the solid that corresponds to the function g(x)=1-mx. Determine the volume of the resulting washer as a function of m, and confirm the result for m=0 using the formula for a cylinder.

Suppose a solid is formed by revolving the function fx2mx around the xaxis where 0mlt1 and 0x1 and a washer is created by drilling a hole in the solid that corr class=

Respuesta :

Answer:

(m³/3 + 5m/2 + 3)pi

Step-by-step explanation:

pi integral [(f(x))² - (g(x))²]

Limits 0 to 1

pi × integral [(2+mx)² - (1-mx)²]

pi × integral[4 + 4mx + m²x² - 1 + 2mx - m²x²]

pi × integral [m²x² + 5mx + 3]

pi × [m²x³/3 + 5mx²/2 + 3x]

Upper limit - lower limit

pi × [m²/3 + 5m/2 + 3]

Verification:

m = 0

[pi × 2² × 1] - [pi × 1² × 1] = 3pi

[m³/3 + 5m/2 + 3]pi

m = 0

3pi

Answer:

Volume for any [tex]m[/tex] in [tex][0,1)[/tex] is [tex]3 \pi+3m\pi[/tex].

Volume for [tex]m=0[/tex] is [tex]3 \pi[/tex].

We get the same thing using the formula (volume of cylinder formula) for [tex]m=0[/tex]. (See below.)

Step-by-step explanation:

Introduction:

[tex]V=\int_{\text{given x-interval of the functions given}} \pi (\text{radius})^2 dx[/tex] (Notice we will be filling the 3d-solid with area of a circles on the given interval.)

The problem is we have a hole in our 3d-solid we will need to subtract it out.

Formula:

The formula for calculating this volume will be:

[tex]V=\int_{\text{given x-interval of the functions given}} \pi (R^2-r^2) dx[/tex]

The radius, [tex]R[/tex] is for bigger circle.

The radius, [tex]r[/tex] is for smaller circle.

What are the radi?:

[tex]R=2+mx[/tex]

[tex]r=1-mx[/tex]

What are the radi squared?:

I will use the identity, [tex](a+b)^2=a^2+2ab+b^2[/tex] to find the square of each radius.

[tex]R^2=(2+mx)^2=2^2+2(2mx)+(mx)^2[/tex]

[tex]R^2=(2+mx)^2=4+4mx+m^2x^2[/tex]

[tex]r^2=(1-mx)^2=1^2+2(1(-mx))+(-mx)^2[/tex]

[tex]r^2=(1-mx)^2=1-2mx+m^2x^2[/tex]

What is the positive difference of the radi squared?:

Let's find [tex]R^2-r^2[/tex] .

[tex]R^2-r^2=[4+4mx+m^2x^2]-[1-2mx+m^2x^2][/tex]

[tex]R^2-r^2=[4-1]+[4mx-(-2mx)]+[m^2x^2-m^2x^2][/tex]

[tex]R^2-r^2=3+6mx+0[/tex]

[tex]R^2-r^2=3+6mx[/tex]

Finding the volume for any [tex]m[/tex] in [tex][0,1)[/tex]:

[tex]V=\int_{\text{given x-interval of the functions given}} \pi (R^2-r^2) dx[/tex]

[tex]V=\int_0^1 \pi (3+6mx)dx[/tex]

[tex]V= \pi (3x+\frac{6mx^2}{2})|_0^1[/tex]

[tex]V=\pi \{[(3(1)+\frac{6m(1)^2}{2}]-[3(0)+\frac{6m(0)^2}{2}]\}[/tex]

[tex]V=\pi \{[3+3m]-[0+0] \}[/tex]

[tex]V=\pi (3+3m)[/tex]

[tex]V=3 \pi+3m \pi[/tex]

Finding the volume for [tex]m=0[/tex]:

At [tex]m=0[/tex], we have [tex]V=3 \pi+3(0) \pi=3 \pi[/tex].

Confirmation using the volume of cylinder for [tex]m=0[/tex]:

If [tex]m=0[/tex], then we have horizontal lines [tex]f(x)=2[/tex] and [tex]f(x)=1[/tex].  

The 3d-figure that results will be a cylinder with a hole in it (that is also in the shape of a cylinder).  

The larger cylinder has a radius of 2 units. So the volume of it is [tex]V=\pi (2)^2(1)=\pi(4)(1)=4\pi[/tex].

The smaller cylinder has a radius of 1 units. So the volume of it is [tex]V=\pi(1)^2(1)=\pi(1)^2(1)=\pi[/tex].

The difference of these cylinder’s volume will give us desired volume of the resulting 3d-figure which is [tex]4\pi-1\pi=3\pi[/tex] units cubed.

Conclusions:

Volume for any [tex]m[/tex] in [tex][0,1)[/tex] is [tex]3 \pi+3m\pi[/tex].

Volume for [tex]m=0[/tex] is [tex]3 \pi[/tex].

We get the same thing using the formula (volume of cylinder formula) for [tex]m=0[/tex]. (See above.)

Ver imagen freckledspots