Write out the first four terms of the series to show how the series starts. Then find the sum of the series or show that it diverges. Summation from n equals 0 to infinity (StartFraction 9 Over 7 Superscript n EndFraction plus StartFraction 3 Over 5 Superscript n EndFraction )

Respuesta :

Answer:

The first four terms of the series are

[tex](9+3),(\frac97+\frac35),(\frac9{7^2}+\frac3{5^2}),(\frac9{7^3}+\frac3{5^3})[/tex]

[tex]\sum_{n=0}^\infty \frac9{7^n}+\frac{3}{5^n}[/tex] = 14.25

Step-by-step explanation:

We know that

Sum of convergent series is also a convergent series.

We know that,

[tex]\sum_{k=0}^\infty a(r)^k[/tex]

If the common ratio of a sequence |r| <1 then it is a convergent series.

The sum of the series is [tex]\sum_{k=0}^\infty a(r)^k=\frac{a}{1-r}[/tex]

Given series,

[tex]\sum_{n=0}^\infty \frac9{7^n}+\frac{3}{5^n}[/tex]

[tex]=(9+3)+(\frac97+\frac35)+(\frac9{7^2}+\frac3{5^2})+(\frac9{7^3}+\frac3{5^3})+.......[/tex]

The first four terms of the series are

[tex](9+3),(\frac97+\frac35),(\frac9{7^2}+\frac3{5^2}),(\frac9{7^3}+\frac3{5^3})[/tex]

Let

[tex]S_n=\sum_{n=0}^\infty \frac{9}{7^n}[/tex]    and     [tex]t_n=\sum_{n=0}^\infty \frac{3}{5^n}[/tex]

Now for [tex]S_n[/tex],

[tex]S_n=9+\frac97+\frac{9}{7^2}+\frac9{7^3}+.......[/tex]

    [tex]=\sum_{n=0}^\infty9(\frac 17)^n[/tex]

It is a geometric series.

The common ratio of [tex]S_n[/tex] is [tex]\frac17[/tex]

The sum of the series

[tex]S_n=\sum_{n=0}^\infty \frac{9}{7^n}[/tex]

    [tex]=\frac{9}{1-\frac17}[/tex]

    [tex]=\frac{9}{\frac67}[/tex]

    [tex]=\frac{9\times 7}{6}[/tex]

    =10.5

Now for [tex]t_n[/tex]

[tex]t_n= 3+\frac35+\frac{3}{5^2}+\frac3{5^3}+.......[/tex]

    [tex]=\sum_{n=0}^\infty3(\frac 15)^n[/tex]

It is a geometric series.

The common ratio of [tex]t_n[/tex] is [tex]\frac15[/tex]

The sum of the series

[tex]t_n=\sum_{n=0}^\infty \frac{3}{5^n}[/tex]

    [tex]=\frac{3}{1-\frac15}[/tex]

    [tex]=\frac{3}{\frac45}[/tex]

    [tex]=\frac{3\times 5}{4}[/tex]

    =3.75

The sum of the series is [tex]\sum_{n=0}^\infty \frac9{7^n}+\frac{3}{5^n}[/tex]

                                        = [tex]S_n+t_n[/tex]

                                       =10.5+3.75

                                       =14.25