Respuesta :

Given:

[tex]f(x)=-4 \sqrt[3]{x}+6[/tex]

To find:

Which table shows correct values for the function.

Solution:

Substitute x = -8 in the function:

[tex]f(-8)=-4 \sqrt[3]{-8}+6[/tex]

Apply radical rule: [tex]\sqrt[n]{-a}=-\sqrt[n]{a}[/tex], if n is odd.

[tex]f(-8)=-(-4 \sqrt[3]{8})+6[/tex]

[tex]f(-8)=4 \sqrt[3]{2^3}+6[/tex]

[tex]f(-8)=4 (2)+6[/tex]

f(-8) = 14

Substitute x = -1 in the function:

[tex]f(-8)=-4 \sqrt[3]{-1}+6[/tex]

Apply radical rule: [tex]\sqrt[n]{-a}=-\sqrt[n]{a}[/tex], if n is odd.

[tex]f(-1)=-(-4 \sqrt[3]{1})+6[/tex]

[tex]f(-1)=4 \sqrt[3]{1^3}+6[/tex]

[tex]f(-1)=4 (1)+6[/tex]

f(-8) = 10

Substitute x = 0 in the function:

[tex]f(0)=-4 \sqrt[3]{0}+6[/tex]

[tex]f(0)=0+6[/tex]

f(0) = 6

Substitute x = 8 in the function:

[tex]f(8)=-4 \sqrt[3]{8}+6[/tex]

[tex]f(8)=-4 \sqrt[3]{2^3}+6[/tex]

[tex]f(8)=-4 (2)+6[/tex]

f(8) = -2

Therefore table 3 is shows correct values for the function.