Respuesta :

The simplest form of the given problem is  [tex]\frac{(x-1)(x-3)}{3(x+3)}[/tex]

Step-by-step explanation:

Given,

[tex]\frac{x^{2} +x-2}{x+3} .\frac{x-3}{3x+6}[/tex]

To find its simplified form.

First we will factorize [tex]x^{2} +x-2[/tex] by middle term factor formula.

Now,

[tex]x^{2} +x-2[/tex]

= [tex]x^{2} +2x-x-2[/tex]

= x(x+2)-1(x+2)

= (x+2)(x-1)

Putting this value into given problem we get,

[tex]\frac{x^{2} +x-2}{x+3} .\frac{x-3}{3x+6}[/tex]

= [tex]\frac{(x+2)(x-1)}{(x+3)} .\frac{x-3}{3(x+2)}[/tex] [ eliminating (x+2)]

= [tex]\frac{(x-1)(x-3)}{3(x+3)}[/tex]

This is the simplest form.