Answer:
Answer is
There are 53 terms in sequence .
Step-by-step explanation:
[tex]the \: given \: sequence \: is \\ 4
[tex]the \: given \: sequence \: is \\ 4,9
[tex]the \: given \: sequence \: is \\ 4,9,14.......264 \\ to \: find \: the \: no.of \: terms \: we \: have \: the \: formula \\ n = \frac{l - a}{d} + 1 \\ here \: l = 264 \: \: \: a = 4 \: \: \ \\ d = t2 - t1 = 9 - 4 = 5 \: \: d = 5 \\ on \: substituting \: the \: values \: in \: the \: formula \\ n = \frac{264 - 4}{5} + 1 \\ = \frac{260}{5} + 1 \\ = 52 + 1 \\ = 53 \: terms
[tex]the \: given \: sequence \: is \\ 4,9,14.......264 \\ to \: find \: the \: no.of \: terms \: we \: have \: the \: formula \\ n = \frac{l - a}{d} + 1 \\ here \: l = 264 \: \: \: a = 4 \: \: \ \\ d = t2 - t1 = 9 - 4 = 5 \: \: d = 5 \\ on \: substituting \: the \: values \: in \: the \: formula \\ n = \frac{264 - 4}{5} + 1 \\ = \frac{260}{5} + 1 \\ = 52 + 1 \\ = 53 \: terms[/tex]
HAVE A NICE DAY!
THANKS FOR GIVING ME THE OPPORTUNITY TO ANSWER YOUR QUESTION.