How to find all possible functions with the given derivative ? If

y′=sin(7t), then y = If y′=cos(t/7), then y = If y′=sin(7t)+cos(t/7),

Then
y =______

Respuesta :

Answer:

a) [tex]y = -\frac{1}{7}\cdot \cos 7\cdot t + C[/tex], b) [tex]y = -\frac{1}{7}\cdot \cos 7\cdot t + 7\cdot \sin \left(\frac{t}{7}\right) + C[/tex].

Step-by-step explanation:

a) The antiderivative of [tex]y' = \sin 7\cdot t[/tex] is:

[tex]y = -\frac{1}{7}\cdot \cos 7\cdot t + C[/tex]

b) The antiderivative of [tex]y' = \sin 7\cdot t + \cos \left(\frac{t}{7}\right)[/tex] is:

[tex]y = -\frac{1}{7}\cdot \cos 7\cdot t + 7\cdot \sin \left(\frac{t}{7}\right) + C[/tex]