Given:
The two functions are [tex]q(x)=2x+2[/tex], [tex]r(x)=x^2+1[/tex]
We need to determine the value of [tex](r \circ q)(-3)[/tex] and [tex](q \circ r)(-3)[/tex]
Value of [tex](r \circ q)(-3)[/tex]:
Let us determine the value of [tex](r \circ q)(-3)[/tex]
[tex](r \circ q)(x)=r[q(x)][/tex]
[tex]=r(2x+2)[/tex]
[tex]=(2x+2)^2+1[/tex]
[tex]=4x^2+8x+5[/tex]
Now, substituting x = -3, we get;
[tex](r \circ q)(-3)=4(-3)^2+8(-3)+5[/tex]
[tex]=4(9)-24+5[/tex]
[tex]=36-24+5[/tex]
[tex](r \circ q)(-3)=17[/tex]
Thus, the value of [tex](r \circ q)(-3)[/tex] is 17
Value of [tex](q \circ r)(-3)[/tex]:
Let us determine the value of [tex](q \circ r)(x)[/tex]
[tex](q \circ r)(x)=q[r(x)][/tex]
[tex]=q(x^2+1)[/tex]
[tex]=2(x^2+1)+2[/tex]
[tex]=2x^2+2+2[/tex]
[tex](q \circ r)(x)=2x^2+4[/tex]
Substituting x = -3, we get;
[tex](q \circ r)(-3)=2(-3)^2+4[/tex]
[tex]=2(9)+4[/tex]
[tex](q \circ r)(-3)=22[/tex]
Thus, the value of [tex](q \circ r)(x)[/tex] is 22.