Respuesta :

[tex]f(x)=(x-\sqrt6)(x+\sqrt6)(x+3)=(x^2-6)(x+3)\\\\=\boxed{x^3+3x^2-6x-18}[/tex]

Answer:

[tex]x^{3} +3x^{2} -6x-18[/tex]

Step-by-step explanation:

We are given zeroes and we need to find a cubic function with these zeroes

zeroes  given are  :     [tex]\sqrt{6} ,  - \sqrt{6}  , -3[/tex]

Since these are zeroes so these can be written as:


[tex](x-\sqrt{6} )(x-(-\sqrt{6} ))(x-(-3)) = 0[/tex]


⇒[tex](x-\sqrt{6} )(x+\sqrt{6} )(x+3) = 0[/tex]


⇒[tex](x^{2} +\sqrt{6} x- \sqrt{6} x -6)(x+3)[/tex]


⇒[tex](x^{2} -6)(x+3)[/tex]


[tex]x^{3} +3x^{2} -6x-18[/tex]


Thus the required cubic function is [tex]x^{3} +3x^{2} -6x-18[/tex]