If a 95.27 mL sample of acetic acid (HC2H3O2) is titrated to the equivalence point with 79.06 mL of 0.113 M KOH, what is the pH of the titration mixture? (For HC2H3O2 , Ka = 1.82 x 10-5)

Respuesta :

Answer:

8.73

Explanation:

The concentration of acetic acid can be determined as follows:

[tex]M_1V_1 = M_2V_2\\(KOH) = (CH_3COOH)[/tex]

[tex]M_{KOH}=0.113 M\\V_{KOH}=79.06 mL[/tex]

[tex]V_{CH_3COOH}=95.27 \\\\M_{CH_3COOH)=?????[/tex]

[tex]M_{CH3COOH} = \frac{M_{KOH}*V_{KOH}}{V_{CH_3COOH}}[/tex]

[tex]M_{CH3COOH} = \frac{0.113*79.06}{95.27}[/tex]

[tex]M_{CH3COOH} = 0.094 M[/tex]

Moles of [tex]CH_3COOH[/tex] = [tex]95.27* 10^{-3}* 0.094[/tex]

=0.0090 moles

Moles of  [tex]KOH = 79.06*10^{-3}*0.113[/tex]

= 0.0090 moles

The equation for the reaction can be expressed as :

[tex]CH_3COOH[/tex]     [tex]+[/tex]      [tex]KOH[/tex]     ----->      [tex]CH_3COO^{-}K^+[/tex]      [tex]+[/tex]     [tex]H_2O[/tex]

Concentration of [tex]CH_3COO^{-[/tex] ion = [tex]\frac{0.0090}{Total volume (L)}[/tex]

= [tex]\frac{0.0090}{(95.27+79.06)} *1000[/tex]

= 0.052 M

Hydrolysis of  [tex]CH_3COO^{-[/tex] ion:

[tex]CH_3COO^{-[/tex]      [tex]+[/tex]       [tex]H_2O[/tex]      ----->      [tex]CH_3COOH[/tex]       [tex]+[/tex]     [tex]OH^-[/tex]

[tex]K = \frac{K_w}{K_a} = \frac{x*x}{0.052-x}[/tex]

⇒    [tex]\frac{10^{-14}}{1.82*10^{-5}}= \frac{x*x}{0.052-x}[/tex]

=     [tex]0.5494*10^{-9}= \frac{x*x}{0.052-x}[/tex]

As K is so less, then x appears to be a very infinitesimal small number

0.052-x ≅ x

[tex]0.5494*10^{-9}= \frac{x^2}{0.052}[/tex]

[tex]x^2 = 0.5494*10^{-9}*0.052[/tex]

[tex]x^2 = 0.286*10^{-10[/tex]

[tex]x = \sqrt{0.286*10^{-10[/tex]

[tex]x =0.535*10^{-5}M[/tex]

[tex][OH] = x =0.535*10^{-5}[/tex]

[tex]pOH = -log[OH^-][/tex]

[tex]pOH = -log[0.535*10^{-5}][/tex]

[tex]pOH = 5.27[/tex]

pH = 14 - pOH

pH = 14 - 5.27

pH = 8.73

Hence, the pH of the titration mixture = 8.73