Answer: Concentration of [tex]NH_3[/tex] in the equilibrium mixture is 0.31 M
Explanation:
Equilibrium concentration of [tex]H_2[/tex] = 0.729 M
The given balanced equilibrium reaction is,
[tex]2NH_3(g)\rightleftharpoons N_2(g)+3H_2(g)[/tex]
Initial conc. x 0 0
At eqm. conc. (x-2y) M (y) M (3y) M
The expression for equilibrium constant for this reaction will be:
3y = 0.729 M
y = 0.243 M
[tex]K_c=\frac{[y]\times [3y]^3}{[x-2y]^2}[/tex]
Now put all the given values in this expression, we get :
[tex]K_c=\frac{0.243\times (0.729)^3}{(x-2\times 0.243)^2}[/tex]
[tex]0.967=\frac{0.243\times (0.729)^3}{(x-2\times 0.243)^2}[/tex]
[tex]x=0.80[/tex]
concentration of [tex]NH_3[/tex] in the equilibrium mixture = [tex]0.80-2\times 0.243=0.31[/tex]
Thus concentration of [tex]NH_3[/tex] in the equilibrium mixture is 0.31 M