Respuesta :
Answer:
576.21kJ
Explanation:
#We know that:
The balance mass [tex]m_{in}+m_{out}=\bigtriangleup m_{system}[/tex]
so, [tex]m_e=m_1-m_2[/tex]
[tex]Energy \ Balance\\E_{in}-E_{out}=\bigtriangleup E_{system}\\\\\therefore Q_i_n+m_eh_e=m_2u_2-m_1u_1[/tex]
#Also, given the properties of water as;
[tex](P_1=2Mpa,T_1=300\textdegree C)->v_1=0.12551m^3/kg,u_1=2773.2kJ/kg->h_1=3024.2kJ/kg\\\\(P_2=2Mpa,T_1=500\textdegree C)->v_2=0.17568m^3/kg,u_1=3116.9kJ/kg->h_1=3468.3kJ/kg[/tex]
#We assume constant properties for the steam at average temperatures:[tex]h_e=\approx(h_1+h_2)/2[/tex]
#Replace known values in the equation above;[tex]h_e=(3024.2+3468.3)/2=3246.25kJ/kg\\\\m_1=V_1/v_1=0.19m^3/(0.12551m^3/kg)=1.5138kg\\\\m_2=V_2/v_2=0.19m^3/(0.17568m^3/kg)=1.0815kg[/tex]
#Using the mass and energy balance relations;
[tex]m_e=m_1-m_2\\\\m_e=1.5138-1.0815\\\\m_e=0.4323kg[/tex]
#We have [tex]Q_i_n+m_eh_e=m_2u_2-m_1u_1[/tex]: we replace the known values in the equation as;
[tex]Q_i_n+m_eh_e=m_2u_2-m_1u_1\\\\Q_i_n=0.4323kg\times3246.2kJ/kg+1.0815kg\times3116.9-1.5138kg\times2773.2kJ/kg\\\\Q_i_n=573.21kJ[/tex]
#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ